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Abstract—In this paper, we present a simple 

theoretical description of recently measured 

transmission coefficient in two-dimensional (2D) 

saddle-point potential. Our study is at absence 

and presence of a perpendicular magnetic field. A 

simple analytical expression obtained for the 

transmission coefficient through the saddle 

point. Our results showed good agreement with 

the calculations of the transmission coefficient in 

the WKB approximation. In addition, our analysis 

makes use of the fact that, for large values of the 

distance of the closest approach of the electron 

to the saddle point and Hamiltonian for this 

system can express as a sum of two commuting 

Hamiltonians. One of them is involving only the 

cyclotron coordinates, and the other one 

involving only the guiding-center coordinates. 

The previous has the form of a 1-D particle in a 

confining harmonic potential and describes the 

vibrations of the electron in guiding-center 

position.  

Keywords—Magnetic field, Transmission, 
Saddle-point, Conductance.                         .                                                                         
.                                 

INTRODUCTION 

  Saddle points are the points on the 

potential energy surface where the 

gradient is zero. In the most general 

terms, a saddle point for a smooth 

function is a stationary point such that the 

curve/surface and other. In the 

neighborhood of a saddle point is not 

entirely on any side of the tangent space 

at that point. In dynamical systems, a 

saddle point is a periodic point that’s 

stable and unstable manifolds have a 

dimension that is non-zero.  

If a differentiable map f gives the 

dynamic, then a point is hyperbolic if and 

only if the differential of  f
 n

 (n is the 

period) has no eigenvalue on the unit 

circle in case of a complex when 

computed at the point.  In this paper, we 

will follow the theoretical discussion 

discovered by V.Wees [1] and Wharam [2] 

in split-gate constrictions of a 2D electron 

gas [3]. The literature [4-16] treats this 

problem by considering a hard-wall 

potential. Some problems considering the 

width of the conduction channel are also 

unspecified to change abruptly, but in the 

other problems [13-16] it is assumed to be 

a smooth function. As is well known, the 

transmission coefficient represents the 

probability flux of the transmitted wave 

about that of the incident wave. In 

addition, the quantum-mechanical solution 

of this scattering problem is simple [17, 

18] and permits physical insight. A 

complete discussion of constriction 
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conductance requires the consideration of 

carrier transmission from one equilibrium 

electron reservoir to another.  However, if 

the transmission is globally adiabatic [5, 

13-16], the calculation of the conductance 

due to the local scattering at the saddle is 

accurate up to exponentially small 

corrections [16]. 

2. Analysis and discussion                                                                                                                                                                                                      

     Near the bottleneck of the constriction 

the electrostatic potential can be 

expanded, and regarding appropriate 

coordinates, x and y is given by

 

.
                               

   txVxmwymwyxV xysp ,
2

1

2

1
, 2222  .                                          (1) 

    Here,    wtVyxV sin, max  is the 

electrostatic potential at the saddle, and 

the curvatures of the potential are 

expressed regarding the frequencies 

yx wandw and we can neglect the higher- 

order terms in x and y.                                                                                                           

Let us first study the case of zero 

magnetic fields. The total energy is the 

sum of kinetic energy p
2
/2m supplemented 

by potential energy as given by equation 

(1). 

We obtain the result;  

  𝐻 = 𝐻° + 𝐻1 , where the Hamiltonian 𝐻° is 

a transverse wave function associated with 

energy ℏ𝑤𝑦 (𝑛 +
1

2
), n=0,1,2… and  𝐻1  is a 

wave function for motion along x in an 

effective potential

  .
2

1

2

1
, 22xmntxV xy  








   In a saddle 

point region can be viewed effective 

potential as the band bottom of the n
th

 

quantum channel (sub-band) [13]. In the 

absence of quantum tunneling (i.e En 

V(x,t)) the channels with threshold energy 

given by. 

.                                   

  

 wtVnwE yn sin
2

1
max








  .                                               (2) 

  

The channels with threshold energy En 

above the Fermi energy are closed; the 

other channels below the Fermi energy are 

open. Quantum mechanically transmission 

and reflection at the saddle allows for 

channels which are neither completely 

open nor completely closed, but which 

permit transmission with a probability 

Tmn. Here, the index 
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n refers to the incident channel and the 

index m refers to the outgoing channel. 

The transmission probability is calculated 

in [17] and it can be written in the 

form.                                                       

                                                               

       

         𝑇 =
1

1+𝑒−𝜋𝜀𝑛 
,                            (3) 

    where      

               𝜀
𝑛

=

2(𝐸−ℏ𝑤𝑦(𝑛+
1

2
)−𝑉𝑚𝑎𝑥𝑠𝑖𝑛(𝑤𝑡))

ℏ𝑤𝑥
. 

 

    Fig.1:  The total transmission probability (conductance)  as a function of (E-V)/hwx for a ratio  of wy/wx=3. The opening of 

successive quantum channels over  narrow energy  intervals  leads to the quantization of the conductance. 

                                       .                                                                                                

      

From Fig.1 we can note that, for εn ≫ 0 the 

transmission probability is close to one, T ≈ 1 −

exp(−πεn). Also the transition from zero 

transmission probability to a transmission 

probability close to one occurs near ε
n

= 0 i.e., 

in the neighborhood of the classical threshold 

energy En given by equation (2). The size of the 

energy interval needed for the transition is 

determined by the term ℏwx. We can determine 

the conductance according to the value of 

transmission from one equilibrium electron 

reservoir to another equilibrium reservoir by the 

sum of all transmission probabilities,T =

∑ Tmn,mn  and is given by G =
e2

h
T  [3, 4, 19, and 

20]. 
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3. Exact Calculation of the transmission 

coefficient.  

      Let us consider a constriction formed by a 

saddle-point potential in 2D 

   txVxmwymwyxV xysp ,
2

1

2

1
, 2222   in a 

uniform magnetic field B (perpendicular to the x 

and y plane), and in the symmetric gauge, the 

vector potential is given by A= (B/2) (-y, x, 0). 

Cyclotron motion with frequency  ω
c

=
eB

mc
 gives 

rise to a new energy scale which affects the 

transmission behavior. We can obtain the 

transmission probabilities have the following 

form [18].                                                                                               

                          

 
1

12max
2

1
sin2exp1



 




































 EnEwtVETmn    .                                    (4) 

Where  

                              E1 = [γ2− {
1

2
Ω − (γ2 + (

wc

2
)

2

)
1 2⁄

}

2

]

1 2⁄

,                                                                      (5)
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

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
  cw

E  ,                                                                         (6) 

     and    

                           
22

xy wwu   ,
 

22

xy wwu  ,
    

 


 u
   , 

2
1

2

24 












 uwc . 

                                                                                                                                                                    

 

Fig.2: The conductance (G, in units of e2/h) of a 2D contact plotted vs the dimensionless cyclotron frequency wc/wx with 

wy/wx=3. Different curves correspond to the marked values of the applied voltage (V in units of hwx/e).                           .                                                                                              
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We recognize that energy levels for systems with 

an orbital angular momentum that were 

degenerate outside of an applied magnetic field, 

with degeneracy of have the same degeneracy 

lifted inside the field. Thus, for example, a 

system with this type of splitting is not observed 

because of coupling between orbital angular 

momentum and the intrinsic angular momentum 

of the electron suggested by Uhlenbeck and 

Goudsmit.  

However, we can use the prediction of the 

behavior of a system with electronic orbital 

angular momentum in a magnetic field to more 

clearly understand the magnitude of the intrinsic 

angular momentum, or spin. Therefore, under the 

effect of magnetic field, the transverse energy 

levels of the electrons equal to  ℏE2 (n +
1

2
).  

The magnetic field shifts the transverse energy 

levels due to the appearance of an vibrating 

structure of the transmission probabilities. In 

Fig.2 for several values of V there is a 

dependence of the constriction conductance on 

the dimensionless cyclotron frequency wc/wx for 

a contact with wy/wx=3. The increment of the 

voltage leads to differences in the behavior of the 

conductance (upper curves). The behavior of the 

conductance can be influenced either by an 

applied magnetic field, applied voltage, or 

combinations of the both.                                                                                                                            

4. Semi classical Quantization for the motion 

of Guiding Center:                                             

The charged particles are perpendicular to both 

the direction of motion and the magnetic field 

line. It depends on much energy the particles 

have as well as the strength of the magnetic field. 

However, if the magnetic field is strong enough, 

and the particle loses a little energy, by 

occasionally colliding with other particles, it can 

get trapped by the magnetic field, at which point 

it will circle it. The particles may tend to spiral 

around magnetic field lines, movable along the 

lines as they orbit nearly them. That part of their 

velocities that is punctuation along the magnetic 

field is not affected, but the part that's 

perpendicular circles them. The physics of 

charged particles in the high magnetic field has 

been one of the significance problems in 

quantum mechanics insufflated by condensed 

matter physics. The unique feature is that the 

system described by two degrees of freedom, 

namely, the motion of cyclotron and guiding 

center if one chooses the particular type of gauge 

for writing the vector potential. In the case that 

we have the uniform magnetic field only, the 

guiding center degrees of freedoms is not active; 

this manifested by the infinite degeneracy of 

Landau levels. The degeneracy implies some 

symmetry which is governed only by the guiding 

center coordinates. Now if a potential of non-

magnetic origin added, the guiding center 

degrees of freedom begins to be active. The 

energy exchange occurs between the motions of 

the cyclotron and guiding center, namely, we 

expect the mixing between inter-Landau levels. 

We can focus our attention on the motion of the 

guiding center in the high magnetic field, and by 

some mathematical analysis we can get the form 

of transmission probability:                                                     

 

 


exp1

1
mnT                                 (7)   

 Where   is a dimensionless measure of   the energy 

of the guiding – center motion relative to the 

potential  wtV sinmax  at the saddle point by this 

form:  
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  
,

sin

1

max

E
wtVE

G


                   (8)   
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(9) 

Where  EG  is  the energy of the guiding center 

motion. If the electron move  in a pure state with 

quantum number  n within  its oscillations about 

the guiding center, then 2
2

1
EnEEG 







 , 

where E is the total energy of the electron,   and 

E2  is the oscillator frequency,                                                               
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                         (10)  

The transition amplitude of one-dimensional (1-

D) particle passing through an inverted parabolic 

barrier has been studied by Connor [17] in the 

context of resonance tunneling reactions. 

Although the results of Connor [17] are closely 

related to our results, however, he does not solve 

explicitly for the transmission coefficient of this 

system. Therefore, we obtained few details of the 

calculation below to find T1D= (EG –V0). We 

have solved explicitly H1 Ψ(x) = (EG-V0) Ψ(x). 

Writing    p= (1/i) (d/dx) and ε= (EG-V0)/E1, The 

equation become 

                                             

  

  .022

2

2









 xxw

dx

d
x

                                                              

(11) 

Equation (11) is discussed in details by Norse 

and Feshbach [22]. The solutions are called 

parabolic cylindrical functions. For each value of 

ε, there is an even and odd solution, which we 

denote respectively as Ψe(x) and Ψ0(x). These 

solutions may be expressed in terms of confluent 

hypergeometric functions  ubaF  as                                    

     

  











 22/

2

1

4

1

4

12

xiwi
w

Fex x

x

xiw

e
x                                                  (12)                             

                      

  











 22/

0
2

3

4

1

4

32

xiwi
w

Fewxx x

x

xiw

x
x                                            (13) 

We now examine the solutions to Eq.(11) for large values of x , writing
ieuu  , one can show:

 

                                     

     
 

   
 ab

b
eu

a

b
eeuubaF iaaubaiba









    ,                                  (14) 
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We see that there is one term in the equation of Ψ0 

and the equation of Ψe  is proportional to 

exp(iwxx
2
/2) as well as  proportional to exp(-

iwxx
2
/2) for large values of x . We will try to 

associate one of these terms with the incoming 

current and the other with the outgoing current. 

Noting that ,
2/2/ 22 xiwxiw xx xepe


 we see that in 

the current associated with another term 

proportional to   
2/2xiwxe  is directed away from 

the origin. The current associated with the term 

proportional to  
2/2xiwxe


 is directed toward the 

origin. We thus associate the former with the 

outgoing current, and the latter with the 

incoming current.  We proceed by forming an 

eigenstate of the form      

     ,0 xBxAx e   where the coefficients 

A and B are chosen such that for large positive 

values of x the coefficient of the 
2/2xiwxe


term 

vanishes. The physical  picture of this situation 

can be viewed as, on the right of x=0 there is 

only an outgoing current, while on the left side 

of the origin there is both an incoming and an 

outgoing current. For large values of x  we 

denote the asymptotic forms of the wave 

function associated with the incoming and 

outgoing current as  uin and  uout  , 

respectively. The transmission coefficient may 

be written as. 
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x
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

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.                                                                      (17)       

In accordance with the above discussion, we now 

choose A and B to satisfy the equation. 
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for large values of   0x , one finds Ψ(x)→Ψ out(x), with          
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For large negative x, one finds. 

 

                     

      
,

44

3

2

3

44

1

2

1

83

8

2841412 2













































































 











i

x

i

xxii

e
w

i
B

e
w

i
A

eexxin                                     (20)      

  substituting Eq. (18) into Eqs. (19) and (20), and using Eq. (17), we find                                                 
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This form can be greatly simplified using the identities    ,* iyxiyx   

                                                                                                                               

 

 

where x and y are arbitrary real numbers[21]. We find 
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Therefore, in the presence of the field, E2 takes the 

plays of ℏwy  and E1 plays the role 

ℏ wx 2⁄   plays at zero fields. Again, there is no 

channel mixing. In the limit of zero applied field, 
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these formulas reduce to the results which is 

presented above. At high fields, when wc exceeds 

wx and wy  Eqs.(9) and (10) simplify 

considerably. The relevant energies are [18]. 

                                                  

    2

1 22 Byxcyx lmE   
.
          (23) 

                                                                                

 where we have used the magnetic length lB
2 =

ℏc
|eB|⁄  and

  

        
.

2 c
E                                 (24)

 

Where Eqs.  (23) and (24) are applicable, a 

simple interpretation is again possible.   In high 

magnetic field the carriers execute rapid 

cyclotron motion around a guiding center with 

energy   EG = E − ℏwc (n +
1

2
),  the 

equipotential contours of the potential in Eq. (1). 

In the absence of tunneling, the trajectories of 

the states in a high magnetic field are determined 

by EG=V(x,y). For EG    V(x,t) this describes a 

trajectory which is repelled by the saddle. The 

closest approach of such a trajectory to the 

saddle point is determined by  EG =V(xn ,0). For 

EG   V(x,t) the trajectory passes through the 

saddle. The closest approach of such trajectory to 

the saddle-point is determined by EG=V(0,yn) as 

has been pointed out in Ref.[18], if εn < 0 , the 

transmission  probabilities in terms of xn or yn 

are in the high- magnetic-field limit.  
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If  ε
n

> 0 since ((xn+1
2 − xn

2) lB
2⁄ = 2wc

2/wx
2 ≫ 1  , 

it is at most one of the transmission probabilities 

which is between zero and one (up to exponentially 

small corrections). All the high-magnetic field 

states, except possibly one, are either completely 

reflected at the saddle or completely transmitted [1].                    

Notice that this implicitly assumes that the 

classical motion of the electron is confined either 

to the left or the right of the saddle point; for xn 

  lB we have     

         
                                    

   2
exp Bnyxmn lxT  .                (27)      

                                                                        

  4.        5. The Connection Formula:   As it well known, the 

WKB method is a method for finding approximate 

solutions to linear partial differential equations with 

varying coefficients. In quantum mechanics, the 

wave function is assumed an exponential function 

with amplitude and a phase that slowly varies 

compared to the de Broglie wavelength, λ, and is 

semi-classically. The heart of any discussion of 

WKB methods is the appropriate connection 

formula. Our definition of the transmission 

coefficient, T, is such that it corresponds to 

quantum tunneling through the saddle-point for 

energies EG   V(x,t),while it corresponds to the 

classical motion around the saddle-point for 

positive energies EG  V(x,t). Note that the 

transmission in the x direction is equivalent to the 

reflection in the y direction,   Consider a potential 

barrier and energy such that EG  V(x,t). The WKB 

solutions to the left and right of the barrier are 

similar. This result in Eq. (27) may obtained for ε 

<0 by applying the WKB approximation in the 

Hamiltonian H1.     
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where 

                                                   

      2
1

22 xVmxk   .                                                                    

(30)  

 

The connection formula relating the constants A 

and B to C and D is given by Froman [21] as 
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                  where the usual barrier penetration integral is:  

                 dxxkZ

x

x




 .                             (32)                                          

We wish to expand  ℤ  in powers of the energy 

relative to the potential maximum. For 

definiteness, we suppose that E   V max, but the 

result is also valid for E  V  max. Let  xᵒ by the 

position of the maximum of V(x) and the 

expansion parameter is λ. 

 Now we have that ℤ is given by 
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(33) 

         where x°
2 = −ε 
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Fig.3: Transmission coefficient of an electron through a saddle-point potential in a strong magnetic field as a function of the 

dimensionless parameter ε  defined by Eqs.(10,11). Dashed line shows WKB approximation of the transmission. 

 

In the strong field limit, we can obtain the 

distance of the turning points from the origin in 

the 1-D problem (xᵒ) corresponds to the distance 

of closest approach of the electron to the saddle 

point (xᵒ) in the 2D problem. We see that in the 

limit | | ≫ 1, TWKB is 

approximately  Exp(−π| |) . It follows that 

regarding to xᵒ,TWKB has precisely the same form 

as T in Eq. (31)    for
  x°

lB
⁄ ≫ 1 in the strong 

magnetic field limit. In Fig. (3), we plot TWKB 

with the exact transmission coefficient T in the 

strong-field limit as a function of the parameter, 

ε. For   ε ≫ 1,  TWKB and T agree quite well. As 

ε → 0,   we find TWKB= (16/25).   In contrast, the 

exact transmission coefficient equals 1 for 

ε = 0. By the symmetry considerations, WKB 

approximation breaks down for small values of 

| ε | is not surprising. May this case represent the 

situation in which the classical turning points of 

the 1-D problem are close to one another. The 

WKB approximation often does poorly when this 

occurs. Although the approximations in the 

WKB method do poorly for small values of xᵒ, 

we expect that for large values of xᵒ it should 

give us a good representation of the exact 

transmission coefficient. This gives us a limit in 

which we check the correctness of our exact 

evaluation of T. As we see in Fig. (3), the 

agreement in this limit is quite good.  Also, we 

will use these results to solve other problems by 

details and connect with our new results [23-26]. 

6. Conclusion  

     During this paper, we have calculated the 

transmission coefficient T for an electron in an 

arbitrary magnetic field and a saddle-point. The 

following conclusions can be drawn from the 

results: 

1- We have obtained a simple theoretical 

description to  transmission coefficient in 

2Dl saddle-point potential in the two cases; 

absence and presence of a perpendicular 

magnetic field. 

2- The results agree well with the WKB 

approximation. In our exact calculation, we 

have expressed the Hamiltonian as a sum of 

the two Hamiltonians, one involving only the 

cyclotron coordinates s and p, the other 

involving only the guiding-center. The 

guiding-center Hamiltonian is that of a 1-D 

particle in an inverted harmonic.  

3-  The motion of the wave packet is consistent 

with the semi classical picture of the Eigen 

functions of an electron in a strong magnetic 

field and a slowly varying potential. The 

probability that the particle in 2-D will tunnel 

through the saddle-point barrier is equivalent 

to the probability that the 1-D particle will be 

transmitted through the inverted harmonic- 

oscillator potential. 
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