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Abstract— Gravity is generated by curvature of 
space, as is well known in General Relativity. 
However, there is no clear mechanism of why 
gravity as force is generated and acceleration is 
generated when the space curves. Given a priori 
assumption that space as a vacuum has a 
physical fine structure like continuum, it enables 
us to apply a continuum mechanics to the so-
called “vacuum” of space. The pressure field 
derived from the geometrical structure of space is 
newly obtained by applying both continuum 
mechanics and General Relativity to space. This 
paper is an attempt to explain the cause of gravity 
and acceleration produced in a curved space. 
Furthermore, this paper is a systematic 
compilation of the contents of the author's papers 
and books so far on gravity and acceleration 
generated in curved space regions [1-6]. 

Keywords— Curvature; gravity; General 
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1. INTRODUCTION 

The phenomenon of falling objects has attracted 
people since the days of ancient Greece. 
Universal gravity, or gravity, makes everyone 
interested in the essence of the phenomenon. 
Why do apples fall? Why is there an attractive force 
between two objects? Fortunately, the formula of 
universal gravitational force was derived by Isaac 
Newton in 1665, and is phenomenologically used to 
explain observed facts and widely used in 
astronomical mechanics and spacecraft orbit 
calculations. However, it is still unknown why and how 
gravity is generated. 

The author tried to explain the cause of gravity by 
applying the mechanical structure of space to General 
Relativity, and by applying continuum mechanics to 
space. The apples on the Earth will not be pulled by 
the Earth and fall, but will be pushed and fall in the 
direction of the Earth due to the pressure of the field in 
the curved space area around the Earth. 

Given a priori assumption that space as a vacuum has 
a physical fine structure like continuum, it enables us 
to apply a continuum mechanics to the so-called 
“vacuum” of space. Minami proposed a hypothesis for 

mechanical property of space-time in 1988 [1]. A 
primary motive was to research in the realm of space 
propulsion theory using the substantial physical 
structure of space-time based on this hypothesis. 

When we make a comparison between the space 
on the Earth and outer space, although there seems 
to be no difference, obviously a different phenomenon 
occurs. Simply put, an object moves radially inward, 
that is, drops straight down on the Earth, but in the 
outer space, the object floats and does not move. 

The difference between the two phenomena can be 
explained by whether space is curved or not, that is, 
whether 20 independent components of a Riemann 
curvature tensor is zero or not. In essence, the 
existence of spatial curvature and curved extent 
region determine whether the object drops straight 
down or not. Although the spatial curvature at the 
surface of the Earth is very small value, i.e.,

23 21.71 10 (1/ )m− , it is enough value to produce 

1G (9.8 m/s2) acceleration. 

Newton's law of universal gravitation is usually 
stated as that every objects attracts every other object 
in the universe with a force that is directly proportional 
to the product of their masses and inversely 
proportional to the square of the distance between 
their centers.   

As is well known, the equation for universal gravitation 

thus takes the form: 1 2

2

m m
F G

r
= ;  

where F is the gravitational force acting between two 
objects, m1 and m2 are the masses of the objects, r is 
the distance between the centers of their masses, and 
G is the gravitational constant. This gravitational force 
is indirectly derived from Kepler’s law based on the 
state of one object m1 rotating around the other object 
m2. 

Originally this attraction force F (i.e., gravitational 
force) between the two objects must be directly 
derived while the two objects (m1 and m2) are 
stationary. 

http://www.scitechpub.org/
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We introduce that the nature of the curved spatial 
region itself creates gravity and gravitational 
acceleration that push an object as field pressure. 

This paper is a systematic compilation of the contents 
of the author's papers and books so far on gravity and 
acceleration generated in curved space regions [1-6]. 

The following Chapter 2 explains the Gravity 
Produced in Curved Space, Chapter 3 introduces 
Acceleration Produced in Curved Space, and 
Chapter 4 presents a vision for Application to Outer 
Space. 

 
2. Gravity Produced in Curved Space 

2.1 Generation of Surface Force Induced by 

Curved Space 

On the supposition that space is an infinite 
continuum, continuum mechanics can be applied to 
the so-called “vacuum” of space. This means that 
space can be considered as a kind of transparent field 
with elastic properties. 
Consider a thin layer of a single space obtained by 
slicing the space of a transparent rubber block. 

If space curves, then an inward normal stress “－P” 

is generated. This normal stress, i.e. surface force 
serves as a sort of pressure field as shown in Fig. 2.1. 

)/1/1()2( 21

2/100 RRNRNP +==−     ,       (2.1) 

where N is the line stress, 1R , 2R  are the radius of 

principal curvature of curved surface, and 
00R  is the 

major component of spatial curvature. 
 

A large number of curved thin layers form the 
unidirectional surface force as shown in Fig. 2.2.  
When surface forces are accumulated, a surface force 
field, that is, a force field is created. An object in the 
force field is accelerated by the force, so an 
acceleration field is generated. A large number of 
curved thin layers form the unidirectional surface 
force,i.e. acceleration field. Accordingly, the spatial 

curvature 
00R  produces the acceleration field . 

It is now understood that the membrane force on 
the curved surface and each principal curvature 
generates the normal stress “–P” with its direction 
normal to the curved surface as a surface force. The 
normal stress “–P” acts towards the inside of the 
surface as shown in Fig. 2.1. 
A thin-layer of curved surface will take into 
consideration within a spherical space having a radius 
of R and the principal radii of curvature that are equal 
to the radius (R1=R2=R). Since the membrane force N 
(serving as the line stress) can be assumed to have a 
constant value, Eq.(2.1) indicates that the curvature

00R generates the inward normal stress P of the 
curved surface. The inwardly directed normal stress 
serves as a pressure field. 

 

 
Fig. 2.1. Curvature of space plays a significant role. If space curves, 

then inward stress (surface force) “P” is generated   A sort of 

pressure field. 

 

 

                                                                                                                                                                                  
Fig. 2.2. A large number of curved thin layers form the unidirectional 

surface force, i.e. acceleration field . 

 

When the curved surfaces are included in a great 
number, some type of unidirectional pressure field is 
formed. A region of curved space is made of a large 
number of curved surfaces and they form the field as 
a unidirectional surface force (i.e. normal stress). 
Since the field of the surface force is the field of a kind 
of force, the force accelerates matter in the field, i.e., 
we can regard the field of the surface force as the 
acceleration field. A large number of curved thin 
layers form the unidirectional acceleration field (Fig. 
2.2).  

Accordingly, the spatial curvature 
00R produces the 

acceleration field .  

For example, consider a soap bubble. 
The pressure “P” due to the membrane force on the 
surface of a soap bubble of radius R is directed 
inward. The membrane force on the surface of the 
soap bubble corresponds to N in the Fig. 2.1. 

1 2(1/ 1/ ) (1/ 1/ ) 2 /P N R R N R R N R− =  + =  + =   .   

                                               (2.2) 
This pressure “P” keeps the soap bubbles from 
breaking due to the expansion force of the internal air. 

Next considering the dynamics of the surface of a 
soap bubble, we can see the similarity of gravity 
generation. 
Fig. 2.1 shows the basic concept of the gravity 
generation mechanism. We show that the curvature of 
space creates a pressure field and an acceleration 
field. 

http://www.scitechpub.org/
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As explained before, Fig. 2.1 shows that the vertical 
force P (surface force) toward the center of the 
surface is generated by the membrane force (line 
stress) N and the radii of curvature R1 and R2 of the 
thin layer with a curved space. The radius of curvature 
decreases toward the inner side, and the vertical 
stress P (surface force) increases. The surface force 
of the membrane layer becomes the membrane 
pressure. 
Fig. 2.3 shows the surface force toward the center of 
the soap bubble. 
The surface of the soap bubble expands due to 
surface tension (line stress N) to maintain the shape 
of the soap bubble, but it is known from continuum 
mechanics that the force toward the center of the 
soap bubble is actually working. If this is applied to the 
space as it is, the space curved in a spherical shape 
applies pressure toward the center of the sphere. This 
is the reality of gravity. 

    
Fig. 2.3. Surface force toward the center of the soap bubble. 

 

Fig. 2.2 shows that when a large number of curved 
thin film layers are integrated, unidirectional surface 
forces are integrated to form an acceleration field. It 
can be used to calculate the gravitational acceleration. 
Fig. 2.4 shows how the surface force due to the 
accumulation of many curved surfaces pushes the 
apple. 
 

      

Fig. 2.4. Surface forces of multiple curved thin film layers 

push apple. 

The fundamental three-dimensional space structure 
is determined by quadratic surface structure. 
Therefore, Gaussian curvature K in two-dimensional 
Riemann space is significant. The relationship 
between Gaussian curvature K and the major 

component of spatial curvature 
00R  is given by: 

00

2

122211

1212

2

1

)(
R

ggg

R
K =

−
= ,              (2.3) 

where 1212R  is non-zero component of Riemann 

curvature tensor. 
Applying membrane theory, the following 

equilibrium conditions are obtained in quadratic 
surface, given by: 

0=+ PbN 


  ,                      (2.4) 

where 
N is a membrane force, i.e. line stress of 

curved space, b is second fundamental metric of 

curved surface, and P is the normal stress on curved 
surface [10]. 

The second fundamental metric of curved space 

b and principal curvature )(iK has the following 

relationship using the metric tensor g ,  

 gKb i)(=   .             (2.5) 

Therefore we get: 

)()()()( iiii KNKNKNggKNbN ====













 . 

(2.6) 
From Eq.(2.4) and Eq.(2.6), we get: 

PKN i −=)(



  .                        (2.7) 

As for the quadratic surface, the indices  and i 

take two different values, i.e. 1 and 2, therefore 
Eq.(2.7) becomes:  

PKNKN −=+ )2(

2

2)1(

1

1  .        (2.8) 

where )1(K and )2(K are principal curvature of curved 

surface and are inverse number of radius of principal 
curvature (i.e. 1/R1 and 1/R2). 

The Gaussian curvature K is represented as: 

                    )/1()/1( 21)2()1( RRKKK ==  . (2.9) 

 Accordingly, suppose NNN ==
2

2

1

1 , we get: 

PRRN −=+ )/1/1( 21  .              (2.10) 

It is now understood that the membrane force on the 
curved surface and each principal curvature generate 
the normal stress “–P” with its direction normal to the 
curved surface as a surface force. The normal stress 
–P is towards the inside of surface as showing in Fig. 
2.1.  
A thin-layer of curved surface will be taken into 
consideration within a spherical space having a radius 
of R and the principal radii of curvature which are 
equal to the radius (R1=R2=R).  From Eqs. (2.3) and 
(2.9), we then get: 

http://www.scitechpub.org/
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2

111 00

2

21

R

RRR
K ===    .         (2.11) 

Considering PRN −= )/2(  of Eq.(2.10), and 

substituting Eq.(2.11) into Eq.(2.10), the following 
equation is obtained: 

002RNP =−    .              (2.12) 

Since the membrane force N (serving as the line 
stress) can be assumed to have a constant value, 

Eq.(2.12) indicates that the curvature
00R generates 

the inward normal stress P of the curved surface. The 
inwardly directed normal stress serves as a kind of 
pressure field. When the curved surfaces are included 
in great number, some type of unidirectional pressure 
field is formed. A region of curved space is made of a 
large number of curved surfaces and they form the 
field of unidirectional surface force (i.e. normal stress). 
Since the field of surface force is the field of a kind of 
force, a body in the field is accelerated by the force, 
i.e. we can regard the field of surface force as the 
acceleration field. Accordingly, the cumulated curved 

region of curvature 
00R  produces the acceleration 

field . 

 

Here, we give an account of curvature 
00R in 

advance. The solution of metric tensor g is found by 

gravitational field equation as the following: 

 
T

c

G
RgR −=−

4

8

2

1
  ,     (2.13)

 

 

where R
 is the Ricci tensor, R is the scalar 

curvature, G is the gravitational constant, c is the 

speed of light, T


 is the energy momentum tensor.

      

 
Furthermore, we have the following relation for scalar 
curvature R : 












ji

ij
j

j RgRRRggRRgRR ===== ,,
.  

                 (2.14)
 

Ricci tensor
R  is represented by: 

)(,, 























 RR =+−−=
 ,   

(2.15)
 

where jk
i  is Riemannian connection coefficient. 

If the curvature of space is very small, the term of 
higher order than the second can be neglected, and 
Ricci tensor becomes: 







 ,, −=R  .                  (2.16)  

The major curvature of Ricci tensor ( 0== ) is 

calculated as follows: 

000000

000000 11 RRRggR =−−==
   .     (2.17)

 

As previously mentioned, Riemannian geometry is a 
geometry that deals with a curved Riemann space, 
therefore Riemann curvature tensor is the principal 
quantity. All components of Riemann curvature tensor 
are zero for flat space and non-zero for curved space. 
If an only non-zero component of Riemann curvature 
tensor exists, the space is not flat space but curved 

space. Therefore, the curvature of space plays a 
significant role. 
 

<Supplemental explanation for Eq.(2.3)> 

For a two-dimensional surface, from the Bianchi 
identity, the Riemann curvature tensor is given by       

( )R K g g g g     = −  , 

that is, 
2

1212 11 22 12( )R K g g g= − . 

And, for a spherical surface of radius r, its Gaussian 
curvature K is 1 / r2. 
The scalar curvature R and the Gaussian curvature K 
on the quadratic surface are as follows: 

11 12 21 22

11 12 21 22

2

2 2 2 2

1 1 2
( 1) ( sin ) 2

sin

i ij
i ijR R g R g R g R g R g R

K
r r r




= = = + + +

= − + − = − = −
. 

 
Calculating metric and Riemannian connection 
coefficient in spherical coordinate system, and using 

R R g R 

  = = , calculate the Ricci tensor, 

the following are obtained: 

11

2

1
g

r
= , 

22

2 2

1

sin
g

r 
=  ,  0other g =  . 

2 2 2

1212 11 22 12 21sin , 1, sin , 0.R r R R R R = − = − = − = =

Namely, from R g R

 = ,  

2 2
22 22

11 2121 1212 2 2

sin
1

sin

r
R g R g R

r





−
= = = = − ,  

11

12 1112 0R g R= = ,
11

21 1211 0R g R= = ,  

11 2 2 2

22 1212 2

1
( sin ) sinR g R r

r
 = = − = −  . 

On the while, the scalar curvature R (1/m2) on a four-
dimensional surface is given by 

00 11 22 33

00 11 22 33

00 00

00 00( 1: )

i ij
i ijR R g R g R g R g R g R

g R R g weak field

= = = + + +

 = −  − . 

Thus, 
002R K R= − = − , then  

001

2
K R=    

is obtained. 
 
 
2.2 Mechanism of GRAVITY: as a Pressure Field 
Induced by Curved Space  

As shown in Fig. 2.5, the gravitational field around 
the Earth is multiply covered by concentric or spherical 
curved spaces centered on the Earth. 

Considering the case of the Earth, the curvature of 
space is spherically symmetric about the Earth and is 
fixed to the Earth, so the Earth itself cannot move due 
to the curvature of the space generated by the Earth. 

http://www.scitechpub.org/
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However, as shown in Fig. 2.6, the apples on the 
Earth are independently in the curved spatial region of 
the Earth. Since the apple exists in the curved spatial 
region from the curved spatial layer at the apple's 
position to the curved spatial layer at the distant 
position, the apple is pushed by the generated curved 
space (i.e., pressure) and falls. That is, referring to Fig. 
2.7, a sort of graduated pressure field is generated by 
the curved range from an arbitrary point “a” in curved 
space to a point “b” (the point at which space is 
absent of curvature, i.e., flat space of curvature 0). 
Then apple moves directly towards the center of the 
Earth, that is, the apple falls. Falling acceleration of 
apple in curved space is proportional to both the value 
of spatial curvature and the size of curved space. 
 

 
Fig. 2.5. Gravitational field around the Earth is a curved space that is 

concentric or spherical about the Earth. 

 

 
Fig. 2.6. Since the apples on the Earth are independently in the curved 

spatial regions of the Earth, the apples fall under the pressure 

generated in the curved spatial regions. 

 

Next, consider the universal gravitational force of a 
well-known apple falling to the Earth. 
Although the attraction between the Earth and the 
apple by universal gravitation can be explained by a 

mathematical formula, 
2

Mm
F G

r
= , there is no 

explanation of the mechanism of the attraction, that is, 
the principle of operation. 
The mechanism can be understood by interpreting 
that the Earth and the apple are pushed toward each 

other from behind the curved space area around the 
Earth and the curved space area around the apple. 
A phenomenon is that an apple is not pulled and falls 
by the Earth, but the apple is pushed toward the Earth 
under the pressure of the vast curved space area of 
the Earth.  
 

 
 

Fig. 2.7. Apple falls receiving a pressure of the field. 

 

Fig. 2.8 shows the mechanism. 
In the upper diagram of Fig. 2.8, there are mass 
bodies A and B, and the space around each mass 
body is curved. As already explained, the mass B is 
pushed out of the curved space field generated by the 
mass A, and the mass A is pushed out of the curved 
space field generated by the mass B, so that they will 
move in the direction of opposition to each other. In 
the lower diagram of Fig. 2.8, mass A is a giant mass 
of the Earth, and mass B is a light apple. 
Apple is pushed from the vast curved space area of 
the Earth and go straight to the Earth. On the other 
hand, the Earth is also pushed from the narrow curved 
space area of the apple and go straight to the apple. 
Since the mass of an apple is smaller than that of the 
Earth, the range of the curved space is small and the 
acceleration with respect to the Earth is almost zero. 
In effect, it looks like an apple is pulled by the Earth 
and falls. Please refer to Ref. [5] in detail. 
 

 
 

Fig. 2.8. Apple and the Earth are pushed out of a curved space and 

collide. 

 
 

http://www.scitechpub.org/
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3. Acceleration Produced in Curved Space 
3.1 Derivation of Acceleration 

A massive body causes the curvature of space-time 
around it, and a free particle responds by moving 
along a geodesic line in that space-time. The path of 
free particle is a geodesic line in space-time and is 
given by the following geodesic equation; 

0
2

2

=+
 d

dx

d

dx

d

xd kj
i

jk

i

   ,  (3.1)                                                        

where jk
i  is Riemannian connection coefficient,  is 

proper time, 
ix is four-dimensional Riemann space, 

that is, three dimensional space (x=x1, y=x2, z=x3) and 
one dimensional time (w=ct=x0), where c is the 
velocity of light. These four coordinate axes are 
denoted as xi (i=0, 1, 2, 3).  

Proper time is the time to be measured in a clock 
resting for a coordinate system. We have the following 

relation derived from an invariant line element 
2ds

between Special Relativity (flat space) and General 
Relativity (curved space): 

     
cdtgdxgd 00

0

00 −=−=  .
  (3.2)          

From Eq.(3.1), the acceleration of free particle is 
obtained by 




d

dx

d

dx

d

xd kj
i

jk

i
i −==

2

2

   .  (3.3)                                         

As is well known in General Relativity, in the curved 
space region, the massive body “m (kg)” existing in 
the acceleration field is subjected to the following 
force F i (N) : 

F m
dx

d

dx

d
m g c u u mi

jk

i
j k

jk

i j k i=   = − = 
 

00

2
,                                 

(3.4) 

where uj,uk are the four velocity, 
i

jk is the 

Riemannian connection coefficient, and τ is the proper 
time. 
From Eqs.(3.3),(3.4), we obtain: 

kj
jk

i
kj

i

jk

i
i uucg

d

dx

d

dx

d

xd
−−=−== 2

002

2


  .                              

       (3.5) 
Eq.(3.5) yields a more simple equation from the 
condition of linear approximation, that is, weak-field, 
quasi-static, and slow motion (speed v << speed of 

light c: 10 u ): 
ii cg 00

2

00 −−=    .            (3.6)                                                                    

On the other hand, the major component of spatial 

curvature
00R in the weak field is given by 























 −+−== 000000000000

00 RRR

                                                                              (3.7) 
In the nearly Cartesian coordinate system, the value 

of 

 are small, so we can neglect the last two terms 

in Eq.(3.7), and using the quasi-static condition we get 

00

00 00

i

iR 

= −  = −    . (3.8)                                                              

From Eq.(3.8), we get formally 

−= iii dxxR )(00

00
 .    (3.9)                                                                          

Substituting Eq.(3.9) into Eq.(3.6), we obtain 

−= iii dxxRcg )(002

00  .            (3.10)

                                                             
Accordingly, from the following linear approximation 

scheme for the gravitational field equation:(1) weak 
gravitational field, i.e. small curvature limit, (2) quasi-

static, (3) slow-motion approximation (i.e., 1/ cv ), 

and considering range of curved region, we get the 
following relation between acceleration of curved 
space and curvature of space: 

 i i i

a

b

g c R x dx= − 00

2 00 ( )    ,         (3.11)                                                             

where 
i : acceleration (m/s2), 00g : time component 

of metric tensor, a-b: range of curved space (m), xi: 
components of coordinate (i=0,1,2,3), c: velocity of 

light, 
00R : major component of spatial curvature(1/m2). 

Eq.(3.11) indicates that the acceleration field 
i  is 

produced in curved space. The intensity of 
acceleration produced in curved space is proportional 

to the product of spatial curvature
00R  and the length 

of curved region. 
Eq.(3.4) yields more simple and effective equation 

from above-stated linear approximation ( 10 u ), 

2 0 0 2

00 00 00 00

2 00

00 ( )

i i i i

b
i i

a

F m g c u u m g c m

m g c R x dx

= −  = −  =

= − 
                     

(3.12) 
Setting i=3 (i.e., direction of radius of curvature: r), we 
get Newton’s second law:  

F F m m g c R r dr m g c
a

b
3

00

2 00

00

2

00

3= = = − = − ( ) 

                                                                           (3.13) 
The acceleration (  ) of curved space and its 

Riemannian connection coefficient (
3

00 ) are given by:  

 = − =
−

g c
g

g
00

2

00

3

00

3 00 3

332
 ,

,
  . (3.14)                                                        

where c: velocity of light, 
00g  and 

33g : component of 

metric tensor, 3

00,3 00 00: / / .g g x g r  =   We choose the 

spherical coordinates “ct=x0, r=x3, θ=x1, =x2 ” in 
space-time. The acceleration is represented by the 

equation both in the differential form and in the 
integral form. Practically, since the metric is usually 
given by the solution of gravitational field equation, the 
differential form has been found to be advantageous.  

 
<Supplemental explanation for Eq.(3.2, 3.5)> 

For the flat space (Special Relativity), invariant line 

element 
2ds is described in  

http://www.scitechpub.org/
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2ds dx dx 

=  . 

In the case of dx
 is time-like, 

2 0 0 0 2 2

00 ( ) ( )ds dx dx dx d = = − = −    . 

Here, 
00 1 = −    

0dx d cdt= =  . 

d  is a proper time measured by a clock that is 

stationary with respect to the coordinate system. 
The proper time does not depend on the coordinate 
system. 
For the curved space (General Relativity), invariant 

line element 
2ds is described in  

2 ( )ds g x dx dx 

=   . 

In the case of dx
 is time-like, 

2 0 0 0 2

00 00( )ds g dx dx g dx= =   . 

We have the following relation derived from an 

invariant line element between Special Relativity 

(flat space) and General Relativity (curved space): 

since the infinitesimal line element 
2ds is invariant,  

      
2 0 2

00( ) ( )d g dx− =   . 

then using one dimensional time (w=ct=x0), we get:  
0

00 00 00d g dx g dw g cdt = − = − = −   . 

By performing the second derivate, 

  
2 0 2 2 2 2

00 00 00( )d g dx g dw g c dt = − = − = −   . 

Further, as is known well in Special Relativity, in the 

case of slow-motion approximation (i.e., 1/ cv ), 

four velocity 
dx

u
d





=  becomes the following: 

0 21
0, 1 ( / ) 1 ( )i iu v u v c v c

c
 =  = = −  . 

Here, substitute the above equation into Eq. (3.3), 
      

2

2

i j k
i i i j k

jk jk

d x dx dx
u u

d d d


  
= = −   = −    . 

Namely, 

2 2

2 2 2

00

i i
i j k

jk

d x d x
u u

d g c dt
= = −

−
, 

then we get,        

2
2

002

i
i j k

jk

d x
g c u u

dt
= − −   . 

Eq.(3.4):  

2

2

2

00

i j k
i i i

jk

i j k

jk

d x dx dx
F m m m

d d d

m g c u u


  

= = =   

= − 

  .                

In the non-relativistic Newton approximation, 
2

2

002

i
i i j k

jk

d x
g c u u

dt
 = = − −     .                             

Eq.(3.5) yields a more simple equation from the 
condition of linear approximation, that is, weak-field, 

quasi-static, and slow motion (speed v << speed of 

light c: 10 u ): 

     
ii cg 00

2

00 −−=   .                              

 
 
3.2 Derivation of the Formula of Universal 
Gravitation 
 

Now in general, the line element is described in:
2 0 2 3 2 1 2 2 2

00 33 11 22

2 2 2 2 2 2 2

00 33 11 22

( ) ( ) ( ) ( )

( ) ( ) ( ) sin ( )

i j

ijds g dx dx g dx g dx g dx g dx

g cdt g dr g r d g r d  

= = + + +

= + + +

                              (3.15)  

We choose the spherical coordinates “ct=x0, r=x3,θ=x1, 

=x2 ” in space-time (see Fig. 3.1). 

 
Fig. 3.1. Spherical coordinate system. 

 
Next, let us consider External Schwarzschild Solution. 

External Schwarzschild Solution is an exact solution 
of the gravitational field equation, which describes the 
gravitational field outside the spherically symmetric, 
static mass distribution. 

The line element is obtained as follows: 
                    

2 2 2 2 2 2 2 21
(1 ) ( sin )

1

g

g

r
ds c dt dr r d d

rr

r

  = − − + + +

−

                                                        (3.16) 
The metrics are given by: 

 ,  (3.17)  ,         (3.17) 

where  is the gravitational radius (i.e. 

).  

Combining Eq.(3.17) with Eq.(3.14) yields: 

,               (3.18)          (3.18)  

where  is gravitational constant and  is total 

mass. 

2ds

.0

),/1/(1,1),/1( 33221100

=

−===−−=

ij

gg

gotherand

rrgggrrg

gr

2/2 cGMrg =

)(,
2

rr
r

M
G g =

G M
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Eq.(3.18) indicates the acceleration at a distance “r” 
from the center of the well-known the Earth mass M. 
The force acting on a mass “m” located at a distance 
“r” from the center of the Earth mass M is: 

2 2

M Mm
F m mG G

r r
= = =     .         (3.19) 

Eq.(3.19) indicates a universal gravitational force 
acting on masses M and m that are stationary with 
respect to each other. 
 

<Supplemental explanation for Eq.(3.18)> 

Eq.(3.14):  = − =
−

g c
g

g
00

2

00

3

00

3 00 3

332
 ,

,
   .                

The metrics are given by (Eq.3.17) 

00 1 1
g gr r

g
r r

 
= − − = − + 

 
 ,  33

1

1
g

g
r

r

=

−

      

Using Eq.(3.14), 

00 00
00,3 3 2

1
g gr rg g

g
x r r r r

   
= = = − + = − 
    

 

2

00,33

00 2 2 3 2

33

1

2 2 2 2 2

g

g g g g

r
r r r rg r

g r r r r

−−
 = =  = −   

Since 
2

2
g

GM
r

c
=  is the gravitational radius, then 

gr r .  Accordingly, the term of 

2

32

gr

r
 is neglected. 

Also, 00 1 1
gr

g
r

 
= − −  − 

 
 .  

Acceleration ( ) is obtained as Eq.(3.18) : 

2 3 2 3 2 2

00 00 00 2 2 2 2

1 2

2 2

gr GM GM
g c c c c

r r c r
 = −  =  = = =

 
 Table.1 Equations effective for the calculation of General 
Relativity 

 

By the way, from 
,

2

nn mm

nn

mm

g

g
 = −  , 

we used 
00,33

00

332

g

g
 = −      (see Table.1). 

 
3.3 Gravitational Acceleration on the Earth's 
Surface 
 

3.3.1 Overview of the Linear Approximation of 

Weak Static Gravitational Fields 

The acceleration  and major curvature 
00R are 

given by 

00

00,

1

2

ij

ijR g h= ,  
2 2

00 00,

1

2

i

ic c h =  =   ,   (3.20) 

respectively from the weak field approximation of the 
gravitational field equation. 

Here, 00h  is deviation between metric tensor 00g of 

curved space and Minkowski metric tensor 00 of flat 

space, that is, 

00 00 00 001g h h= + = − +  .          (3.21) 

The notation of the symbol is as follows: 

00

00
00,ij i j i j

h
h h

x x


=   =

 
   .          (3.22) 

As is well known, the partial derivative 
,

i
i j j i j

u
u u

x


=  =


 

is not tensor equation. The covariant derivative 
k

ijkjiji uuu −= ,: is tensor equation and can be 

carried over into all coordinate systems. 
If the gravitational field is time-invariant, or static, and 
the gravitational field is not very strong, Ricci tensor

R is given by: 

( )

( )

, , ,

1

2

1

2

R h h h h

h h h h



      



        

= + − −

= +   −  − 

   , 

where 
2 2

0( )

 =   =  −    .  

                (3.23) 

Since all are static ,0 0h =  ( 0 0h = ) and now 

setting μ = ν = 0, this component 
00R is obtained 

( )2 2 2

00 00 00,0 ,00 0 , 0 0,0 00

1 1
( )

2 2
R h h h h h h

  =  − + − − =    

              (3.24) 
On the other hand,  

00 00 00 00 2

2
1 1g h h

c
 = + = − + = − −   .    (3.25) 
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As is well known, potential is 

GM

R
 = −  ,             (3.26) 

where M is the Earth mass, R is the Earth radius, G is 
the Gravity constant. 
We get,  

00 2 2 2

2 2 2GM GM
h

c c R c R
= − = − − =  . (3.27) 

Then, 

2 2 2

00 00 2 2

1 1 2 1

2 2
R h

c c




 
=  =  − = −  

 
  .    (3.28) 

Curvature 
00R can be described by the following 

approximation: 
2 2 2

2

00 00 00 00 002 2 2

2
200

002

1 1

2 2

1 1

22

R h h h h
x y z

d h
h R

dx

   
=  = + + 

   

 

,(3.29) 

where x is toward the Earth center. 
A similar result is obtained from Eq.(3.20) as: 

00 33 2 3 3 33 2

00, 00 00

2 2 2

00 00

1/ 2 1/ 2 / 1/ 2 /

1/ 2 / 1/ 2 /

ij

ijR g h g h x x g h x x

h r h R

=  =     =    

=    

      
                          . (3.30) 
The approximate expression for gravitational 
acceleration is: 

2 2 2 200
00, 00, 00

1 1 1 1

22 2 2
i x

dh
c h c h c c h R

dx
 = = =  .

                                                    (3.31) 
On the other hand, as described in previously (see 
Eq.3.11), the gravitational acceleration is also given 
by the following equation: 

2 00

00 ( )
b

a
g c R r dr = −   .           (3.32) 

Considering 00 1g = − , substituting Eq.(3.29) or 

Eq.(3.30) into Eq.(3.32), we get 
2

2 00 00

2

1

2 2R

h hc
c dr

r R




= =     .        (3.33) 

Eq.(3.33) matches Eq.(3.31), and the equation of 
gravitational acceleration expressed by Eq.(3.32) 
gives the mechanism of gravity. This physical concept 
becomes clear in the next section. 

Further, major curvature of Ricci tensor ( 0== ) 

is calculated as follows: 

000000

000000 11 RRRggR =−−==   .    (3.34) 

Here for convenience, raise the index and use it in the 

notation of 
00R  instead of 

00R . 

00 2

00, 00,2

,

, ,2 2

1 1 1

2 2

1 1

ij ij

ij i

j

ij j

i j j

R g h g c h
c

g
c c

 

 
= =  

 

= =

      ,    (3.35)  

where 00
00,ij i j

h
h

x x


=
 

  . 

 

3.3.2 Gravitational Acceleration on the Earth 
The accumulation of surface forces in a curved area 

of space from the Earth's surface R to the point at 
infinity ( ) gives the gravitational acceleration on the 
Earth's surface. 

2 00 2 2

00 002

2
2 00

00

1 1 1 1
( )

2 2

1 1 1
(0 )

2 2

R R
R

c R r dr c h dr c h
r r

c h
c h

R R




   

= = = −  
 

= − − =

 

                                                                                   (3.36) 

From Eq. (3.27), the deviation 00h of the metric tensor 

00g from the flat space ( 00 = -1) on the Earth’s 

surface becomes: 

00 2

2GM
h

c R
=  .           (3.37) 

The curvature of the space is (see Eq.3.29): 

2

00 00

1
/

2
R h R

 
=  
 

 .         (3.38) 

The gravitational acceleration is (see Eq.3.31): 

2

00

1
( ) /
2

c h R =  .        (3.39) 

Substitute the values of the Earth radius 
R=6.378×103km, GM=3.986×105km3/s2, c=3×105km,  
we get the following values respectively: 

 

5 5
9

00 2 5 2 3 13

9 2 9 6

00 00 2 3 2

17 2 23 2

2

00

2 2 3.986 10 2 3.986 10
1.389 10

(3 10 ) 6.378 10 9 6.378 10

1 1 1 1
1.389 10 1.71 10 10 10

2 2 (6.378 10 )

1.71 10 (1/ ) 1.71 10 (1/ )

1 1 1
(

2 2

GM
h

c R

R h
R

km m

c h
R



−

− − − −

− −

   
= = = = 

    

 
=  =    =    

 

=  = 

 
=  =  
 

5 2 9

3

10 9 3 2 2 2

1
3 10 ) 1.389 10

6.378 10

1 1
9 1.389 10 10 10 0.98 10 / 9.8 /

2 6.378
km s m s

−

− − −

   


=       =  =

 
In this way, the following approximate values can be 
obtained: 
The amount of displacement of the space on the 

Earth's surface: 
9

00 1.389 10h −=  . 

Curvature of space on the Earth's surface: 
23 2

00 1.71 10 /R m−=  . 

Gravitational acceleration on the Earth's surface
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29.8 /m s = . 

 
Next, a description will be given using the drawings. 
Fig. 3.2 shows a concentric curved space area around 
the Earth. Distance of radius R from the center of the 
Earth is the surface of the Earth. 
At a distance from the Earth to an infinite point, the 
space becomes flat space without being affected by 
the gravitation of the Earth. The point at infinity is 
indicated by a symbol  and a dotted line. 
The accumulation of surface forces in a curved area 
of space from the Earth's surface R to the point at 
infinity (  ) gives gravitational acceleration on the 

Earth's surface, i.e., 
29.8 /R m s = . 

2 00 2 2

00 002

2
2 00

00

1 1 1 1
( )

2 2

1 1 1
(0 )

2 2

R R
R

c R r dr c h dr c h
r r

c h
c h

R R




   

= = = −  
 

= − − =

 
.                                                                              

(3.40) 

 
Fig. 3.2. Mechanism of gravitational acceleration generation on the 

Earth's surface. 

 
As well, Fig. 3.3 shows a concentric curved space 
area around the Earth. Distance of radius R from the 
center of the Earth is the surface of the Earth. Here 
consider the gravitational acceleration at a height h 
away from the Earth's surface. 
At a distance from the Earth to an infinite point, the 
space becomes flat space without being affected by 
the gravitation of the Earth. The point at infinity is 
indicated by a symbol  and a dotted line. 
The accumulation of surface forces in a curved area 
of space from the Earth's surface R+h to the point at 
infinity ( ) gives the gravitational acceleration at the 

Earth's height h, i.e., 
29.8 /R h R m s +  = . 

2 00 2 2

00 002

2
2 00

00

1 1 1 1
( )

2 2

1 1 1
(0 )

2 2 ( )

R h R h
R h

c R r dr c h dr c h
r r

c h
c h

R h R h




 

+ +
+

 
= = = −  

 

= − − =
+ +

 

.                                                                      
(3.41) 

                       

 
Fig. 3.3. Mechanism of gravitational acceleration generation on the 

Earth's surface height h. 

 
As described above, although the spatial curvature at 
the surface of the Earth is very small value, i.e.,

23 21.71 10 (1/ )m− , it is enough value to produce 1G 

(9.8 m/s2) acceleration. 

 
4. Application to Outer Space 

Comparing the space on the ground and the space 
in outer space, although there seems to be no 
difference, obviously a different phenomenon occurs. 
Simply put, an object moves radially inward, that is, 
drops straight down on the Earth, but in the outer 
space, the object floats and does not move. 
The difference between the two phenomena can be 
explained by whether space is curved or not. In 
essence, the existence of spatial curvature and 
curved extent region determine whether the object 
drops straight down or not. Although the spatial 
curvature at the surface of the Earth is very small 
value, i.e., 23 21.71 10 (1/ )m− , it is enough value 

to produce 1G (9.8 m/s2) acceleration.  
Conversely, the spatial curvature in the outer space is 
zero, therefore any acceleration is not produced. 
Accordingly, if the spatial curvature of a localized area 
containing object is controlled to the curvature of 

23 21.71 10 (1/ )m−  with a sufficiently large curved 

space area, the object moves and receives 1G 
acceleration in the outer space. Of course, we are 
required to control both the magnitude of the 
curvature and the size of the curved space area. 
   So how can we curve the space artificially? As a 
matter of fact, space curvature is generated not only 
by mass energy but also by electromagnetic energy. 
From General Relativity, the major component of 

curvature of space 
00R  can be produced by not only 

mass density but also the magnetic field B as follows:   
                                           

, (4.1) 

where  , , 

, )/(103 8 smc = , 

 is a magnetic field in Tesla and 
00R is a major 

component of spatial curvature . 

Eq.(4.1) indicates that the major component of spatial 

)(102.8
4 2382

4

0

00 TeslainBBB
c

G
R == −





)/(104 7

0 mH−=  )/(10)36/(1 9

0 mF−= 

)/(10672.6 2211 kgmNG = −

B

)/1( 2m
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curvature can be controlled by a magnetic field B. In 
case that the intensities of the magnetic field B and 

the electric field E are equal, the value of ( 2

01/ 2 E ) 

is about seventeen figures smaller than the value of 
( 2

0/ 2B  ). As a consequence, the electric field only 

negligibly contributes to the spatial curvature as 
compared with the magnetic field. 
The relationship between curvature and magnetic field 
was derived by Minami and introduced it in 16th 
International Symposium on Space Technology and 
Science (1988) [1]. 
Please refer to [1, 7 (appendix A), 8 (appendix A), 9] 
for Eq.(4.1) derivation. 
 
 

5. Conclusion 

Assuming that space is an infinite continuum, a 
mechanical concept of space became identified. 
Space can be considered as a kind of transparent 
elastic field. The pressure field derived from the 
geometrical structure of space is newly obtained by 
applying both continuum mechanics and General 
Relativity to space.  

The mass on the Earth will not be pulled by the 
Earth and fall, but will be pushed and fall in the 
direction of the Earth due to the pressure of the field 
produced in the curved space area around the Earth. 
Gravity and its gravitational acceleration can be 
explained as a pressure field induced by the curvature 
of space. 
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