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Abstract— Linear buckling analysis, which is 
also called eigenvalue approach, is able to predict 
the theoretical critical buckling load. This method 
is used for Finite Element Analysis and also in 
compliance with theoretical methods in solid 
mechanics or theory of plates and shells. Material 
behaviour is completely elastic for this type of 
analysis and will be processed based on solving 
eigenvalue problem. This paper presents a finite 
element model for a circular plate with fixed edge 
and simply supported edge as two different 
boundary conditions. The study uses ABAQUS 
(Student Edition 2019) software to derive the finite 
element model of the circular plate. The results 
obtained through FEM would be compared with an 
exact solution for both boundary conditions.  

 

Keywords— Critical buckling load; Equilibrium 
method; Partial differential equation; Finite 
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1. Introduction  

Thin plates of various shapes used in naval 
and aeronautical structures are often subjected to 
normal compressive and shearing loads acting in the 
middle plane of the plate (in-plane loads). Under 
certain conditions such loads can result in a plate 
buckling. Buckling or elastic instability of plates is of 
great practical importance [1-5].  

The buckling load depends on the plate 
thickness: the thinner the plate, the lower is the 
buckling load. In many cases, a failure of thin plate 
elements may be attributed to an elastic instability and 
not to the lack of their strength. Therefore, plate 
buckling analysis presents an integral part of the 
general analysis of a structure [1,2,3]. 

Finite element analysis is a numerical 
approach for different types of analyses including 
static and dynamic analyses. Pouladkhan et al. [6] 
studied a finite element model for a simply supported 
and simply supported-simply supported-fixed-free 
rectangular thin plate for buckling analysis using 
ABAQUS software. Pouladkhan et al. [7] presented a 

finite element model for a simply supported 
rectangular thin plate for vibration analysis using 
ABAQUS software. A finite element model for a 
sandwich plate for deflection and stress analysis using 
ABAQUS software were investigated by Pouladkhan 
et al. [8].  

In this study, we consider a systematic but 
simplified analysis of plate buckling and obtain some 
useful relations between the critical loads and plate 
parameters for the corresponding exact solutions. The 
exact solutions will be compared with finite element 
analysis for different boundary conditions.  
 

2. General postulations of the theory of stability of 
plates 

This section contains some fundamentals of 
classical stability analysis of thin elastic plates. It 
should be noted that the stability analysis of plates is 
qualitatively similar to the Euler stability analysis of 
columns [2].  

Consider an ideal thin, elastic plate, which is 
assumed initially to be perfectly flat and subjected to 
external in-plane compressive and shear loads acting 
strictly in the middle of plane of the plate. The 
resulting deformations of this plate are characterized 
by the absence of deflections (�≠0, �≠0, ��� �=0) 
and, consequently, of the bending and twisting 
moments, as well as the transverse shear forces. 
Such a plane stress condition of the plate is referred 
to as an initial or flat configuration of equilibrium, 
assuming the equilibrium conditions between applied 
external loads and the corresponding in-plane stress 
resultants [6].  

Depending mainly on values of the applied in-
plane loads, an initial, flat configuration of plate 
equilibrium may be stable or unstable. The initial 
configuration of elastic equilibrium is stable, if when 
the plate is displaced form this equilibrium state by an 
infinitesimal disturbance, say a small lateral force, the 
deflected plate will tend to come back to its initial, flat 
configuration when the disturbance is removed. The 
initial configuration of equilibrium is said to be 
unstable, if when the plate is displaced from this 
equilibrium position by a small lateral load, it will tend 
to displace still further when the load is removed. If 
the plate remains at the displaced position even after 
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the small lateral load is removed, it is said to be in 
neutral equilibrium. Thus, the plate in neutral 
equilibrium is neither stable nor unstable [6].  

The goal of the buckling analysis of plates is 
to determine the critical buckling loads and the 
corresponding buckled configuration of equilibrium. 
We consider below the linear buckling analysis of 
plates based on the following assumptions: 

(a) Prior to loading, a plate is ideally flat and the 
entire applied external loads act strictly in the 
middle plane of the plate. 

(b)  States of stress is described by equations of 
the linear plane elasticity. Any changes in the 
plate dimensions are neglected prior to 
buckling. 

(c)  All the loads applied to the plate are dead 
loads; that is, they are not changed either in 
magnitude or in direction when the plate 
deforms. 

(d)   The plate bending is described by Kirchhoff 
's plate bending theory. 

  
The linear buckling analysis of plates based on 

these assumptions makes it possible to determine 
accurately the critical loads, which are of practical 
importance in the stability analysis of thin plates. 
However, this analysis gives no way of describing the 
behavior of plates after buckling, which is also of 
considerable interest. The post-buckling analysis of 
plates is usually difficult because it is basically a 
nonlinear problem.  

Classical buckling problems of plates can be 
formulated using (1) the equilibrium method, (2) the 
energy method, and (3) the dynamic method. In this 
study, we use the equilibrium method [2,3,4].  
 

3. The equilibrium method  

Consider an initial state of equilibrium of a 
plate subjected to the external edge loads acting in 
the middle plane of the plate. Let the corresponding 
in-plane stress resultants in this initial state be 𝑁𝑥, 𝑁𝑦, 

and 𝑁𝑥𝑦. They may be found from the solution of the 

plane stress problem for the given plate geometry and 
in-plane external loading. For the plate, the in-plane 
external edge loads that result in an elastic instability 
as in the case of a beam column, are independent of 
the lateral loads. Therefore, the governing differential 
equation of the linear buckling analysis of plates can 
be presented as follow:  
 

𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4

=
1

𝐷
(𝑁𝑥

𝜕2𝑤

𝜕𝑥2
+ 2𝑁𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦

+ 𝑁𝑦

𝜕2𝑤

𝜕𝑦2
)                                              (1) 

 

Where 𝑁𝑥, 𝑁𝑦, and 𝑁𝑥𝑦 are the internal forces acting in 

the middle surface of the plate due to the applied in-
plane loading. This equation is a homogeneous, 

partial differential equation. The mathematical 
problem is to solve this equation with appropriate 
homogeneous boundary conditions. In general, such a 
problem has only a trivial solution corresponding to 
the initial, flat configuration of equilibrium (i.e. w=0). 
However, the coefficients of the governing equation 
depend on the magnitudes of the stress resultants, 
which are in turn, connected with the applied in-plane 
external forces, and we can find values of these loads 
for which a nontrivial solution is possible. The smallest 
value of these loads will correspond to a critical load 
[3,4].  
 

4. Buckling of circular plates  

Circular plates in some measuring 
instruments are used as sensitive elements reacting 
to a change in the lateral pressure. In some cases – in 
temperature changes, in the process of their assembly 
– these elements are subjected to the action of radial 
compressive forces from a supporting structure. As a 
result, buckling of the circular plates can take place 
[9,10].  

Let us consider a circular solid plate subjected 
to uniformly distributed in-plane compressive radial 

forces 𝑞𝑟, as shown in Fig. 1. We confine our buckling 
analysis to considering only axisymmetric 
configurations of equilibrium for the plate [11,12]. We 
can use the polar coordinates 𝑟 and 𝜑 to transfer the 
governing differential equation of plate buckling (Eq. 
(1)), derived for a rectangular plate, to a circular plate 
[13].  

 

 
Fig. 1. Circular solid plate subjected to uniformly 

distributed in-plane compressive radial forces [1]. 
 

For the particular case of axisymmetric loading and 
equilibrium configurations, we have  
𝑁𝑥 = 𝑁𝑦 = 𝑁𝑟 = −𝑞𝑟     ,

𝑁𝑥𝑦 = 0 

(2) 

 

Denoting  

𝜇2 =
𝑞𝑟

𝐷
 

(3) 

and using the relations between the polar and 
Cartesian coordinates, we obtain the following 
differential equation of the axisymmetrically loaded 
circular plate subjected to in-plane compressive forces 
𝑞𝑟:  
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𝑑4𝑤

𝑑𝑟4
+

2

𝑟

𝑑3𝑤

𝑑𝑟3
−

1

𝑟2

𝑑2𝑤

𝑑𝑟2
+

1
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𝑑𝑤

𝑑𝑟
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𝑑𝑟2
+

1

𝑟

𝑑𝑤

𝑑𝑟
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(4) 

Let us introduce the following new variable:  

𝜌 = 𝜇𝑟, (5) 

which represents a dimensionless polar radius. Using 
the new variable 𝜌, we can rewrite Eq. (4), as follows: 
 

𝑑4𝑤

𝑑𝜌4
+

2

𝜌

𝑑3𝑤

𝑑𝜌3
+ (1 −

1

𝜌2
)

𝑑2𝑤

𝑑𝜌2

+
1

𝜌
(1 +

1

𝜌2
)

𝑑𝑤

𝑑𝜌
= 0 

(6) 

This is a fourth-order linear, homogeneous differential 
equation. The general solution of this equation is 
given by [2] as 
 

𝑤(𝜌) = 𝐶1 + 𝐶2 ln 𝜌

+ 𝐶3𝐽0(𝜌)

+ 𝐶4𝑌0(𝜌), 

(7) 

where 𝐽0(𝜌) and 𝑌0(𝜌) are the Bessel functions of the 
first and second kind of zero orders, respectively. 
They are tabulated in Ref. [14]. In Eq. (7), 𝐶𝑖 (𝑖 =
1, ⋯ , 4) are constants of integration. Since 𝑤(𝜌) must 
be finite for all values of 𝜌, including 𝜌 = 0, then the 
two terms ln 𝜌 and 𝑌0(𝜌), having singularities at 𝜌 = 0, 
must be dropped for the solid plate because they 
approach an infinity when 𝜌 → ∞. Thus, for the solid 
circular plate, Eq. (7) must be taken in the form 
 

𝑤(𝜌) = 𝐶1 + 𝐶3𝐽0(𝜌) (8) 

Now, we want to determine the critical values of the 

radial compressive forces, 𝑞𝑟 , applied to the middle 
plane of solid circular plates for two types of boundary 
supports. 
 

4.1. Circular plate with fixed edge 

Let the radius of the plate be R. We denote the 
corresponding value of 𝜇𝑅  by 𝛽 , i.e., 𝛽 = 𝜇𝑅 . The 
boundary conditions are 
  

𝑤(𝛽) = 0|𝜌 = 𝛽,     𝜗(𝛽)

= 0|𝜌 = 𝛽, 

(a) 

where the slope of the plate midsurface, 𝜗(𝜌), is given 
by  

𝜗(𝜌) = 𝜇
𝑑𝑤

𝑑𝜌
= 𝜇𝐶3

𝑑

𝑑𝜌
𝐽0(𝜌) 

(b) 

From the Bessel function theory [14], that it follows  

𝐽1(𝜌) = −
𝑑

𝑑𝜌
𝐽0(𝜌) 

(c) 

Thus, we can write the following representations for 
the slope 
𝜗(𝜌) = −𝜇𝐶3𝐽1(𝜌), (9) 

and  

𝜗(𝛽) = −𝜇𝐶3𝐽1(𝛽)     on the 

boundary, 

(10) 

where 𝐽1( ) is the Bessel function of the first kind of the 
first order. Substituting the expressions (9) and (10) 
into the boundary conditions (a) yields the following 
system of two linear homogeneous equations: 
 

𝐶1 + 𝐶3𝐽0(𝛽) = 0, 

    −𝜇𝐶3𝐽1(𝛽) = 0 

For a nontrivial solution of these equations: 

𝐽1(𝛽) = 0  

From the tables of roots of the Bessel functions [14] it 

follows that the smallest root of the function 𝐽1(𝛽) is 

𝛽𝑚𝑖𝑛 = 3.8317. Noting that 𝛽2 = (𝜇𝑅)2 = 𝑞𝑟 𝐷⁄ 𝑅2, we 
obtain the critical value of the compressive forces as 

𝑞𝑟,𝑐𝑟 = (3.8317)2
𝐷

𝑅2

= 14.68
𝐷

𝑅2
 

(11) 

For a steel plate with the following geometric and 

mechanical parameters:   

𝐸 = 200  𝐺𝑝𝑎 ; 𝜗 = 0.3 ; ℎ = 1 𝑚𝑚 ; 𝑅 = 0.1𝑚   

𝐷 =
𝐸ℎ3

12(1 − 𝜗2)
            𝐷 = 18.315  𝑁. 𝑚2 

𝑞𝑟,𝑐𝑟 = 14.68
𝐷

𝑅2
= 14.68

18.315

0.12
= 26886.42 𝑁 𝑚⁄  

 

4.2. Circular plate with simply supported edge  

The boundary conditions for this type of support are 

𝑤(𝛽) = 0|𝜌=𝛽 , 𝑀𝑟(𝛽) = 0|𝜌=𝛽 (d) 

The radial bending moment, 𝑀𝑟 , for an 
axisymmetrically loaded circular plate is given by Eq. 
(12).  

𝑀𝑟 = −𝐷 (
𝑑2𝑤

𝑑𝑟2
+

𝜗

𝑟

𝑑𝑤

𝑑𝑟
) (12) 

When passing from variable 𝑟 to the variable 𝜌, the 

expression for 𝑀𝑟 becomes  

𝑀𝑟 = −𝐷𝜇2 (
𝑑2𝑤

𝑑𝜌2
+

𝜗

𝜌

𝑑𝑤

𝑑𝜌
) (13) 

Using Eq. (8) for the deflections and Eq. (13) for the 
radial bending moments, we can represent the second 
boundary condition (d) in the form 

−𝐷𝜇2 [
𝑑2

𝑑𝜌2
𝐽0(𝜌) +

𝜗

𝜌

𝑑

𝑑𝜌
𝐽0(𝜌)]

= 0|𝜌=𝛽 

(14) 

Using the relationships between the Bessel functions 
of the first kind [14], we have  

𝑑2

𝑑𝜌2
𝐽0(𝜌) = −𝐽0(𝜌)

+
1

𝜌
𝐽1(𝜌) 

(e) 
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Substituting the expression for the deflections (8) into 
the boundary conditions (d) and taking into account 
Eqs. (14) and (e), we arrive at the following system of 
linear homogeneous equations: 

                            𝐶1 + 𝐶3𝐽0(𝛽)

= 0 

−𝐷𝜇2𝐶3[𝛽𝐽0(𝛽) − (1

− 𝜗)𝐽1(𝛽)]

= 0 

(f) 

A nontrivial solution of this system of equations leads 

to the following: 

𝛽𝐽0(𝛽) − (1 − 𝜗)𝐽1(𝛽) = 0 (g) 

Letting 𝜗 = 0.3  and using the tables of the Bessel 
function [14], we can determine the smallest nonzero 
root of Eq. (g). We have 
𝛽𝑚𝑖𝑛 = 2.0485,  

and the critical value of an intensity of the radial 
compressive forces is  

𝑞𝑟,𝑐𝑟 = 4.196
𝐷

𝑅2
 (15) 

For a steel plate with the following geometric and 

mechanical parameters: 

𝐸 = 200  𝐺𝑝𝑎 ; 𝜗 = 0.3 ; ℎ = 1 𝑚𝑚 ; 𝑅 = 0.1𝑚   

𝐷 =
𝐸ℎ3

12(1 − 𝜗2)
            𝐷 = 18.315  𝑁. 𝑚2 

𝑞𝑟,𝑐𝑟 = 4.196
𝐷

𝑅2
= 4.196

18.315

0.12
= 7684.97 𝑁 𝑚⁄  

Comparing the values of the critical compressive 
forces for the clamped and simply supported circular 
solid plates, we can conclude that the replacement of 
the supported edges with clamped ones increases the 
critical force by a factor of 3.5.  
 

5. The Finite Element Method (FEM) 

The finite element method (FEM) is based on 
the concept that one can replace any continuum by an 
assemblage of simply shaped elements with well-
defined force displacement and material relationships. 
While one may not be able to derive a closed-form 
solution for the continuum, one can derive an 
approximate solution for the element assemblage that 
replaced it.  

According to the FEM, a plate is discretized 
into a finite number of elements (usually, triangular or 
rectangular in shape), called finite elements and 
connected at their nodes and along interelement 
boundaries. Unknown functions (deflections, slopes, 
internal forces, and moments) are assigned in the 
form of undetermined parameters at those nodes. The 
equilibrium and compatibility conditions must be 
satisfied at each node and along the boundaries 
between finite elements [15].   

In this study a comparison between the FEM 
approach with exact solution based on the equilibrium 
method has been investigated and Mesh 
Convergence Curve criterion is considered to optimize 
the FEM results. For this investigation, ABAQUS 

software has been employed to derive the finite 
element model of the circular plate. The Eigenvalue 
Method is used for finite element analysis of linear 
buckling of the circular plate.  
 
6. Geometry and problem description  

6.1. Circular plate with fixed edge  

The model used for this study is a circular 
plate with fixed edge, which has been discretized by 
S8R elements, S8R: An 8-node doubly curved thick 
shell, reduced integration [16]. Boundary configuration 
and typical finite element model of the circular plate 
with fixed edge are shown in Figs. 2 and 3 
respectively. Table 1 shows number of elements used 
to achieve optimum mesh for the circular plate with 
fixed edge.   

 
Fig. 2. Boundary configuration of the   circular plate 

with fixed edge. 

 
Fig. 3. Typical finite element model of the circular 

plate with fixed edge. 

 
Table 1. Number of elements used to achieve 

optimum mesh of the circular plate with fixed edge. 

A.G.S Number of Mesh 
Critical Load 
(𝑞𝑟,𝑐𝑟 ;  𝑁 𝑚⁄ ) 

0.02 110 27752 

0.0125 291 26975 

0.0120 309 26982 

0.0150 199 27097 

0.0140 216 27033 

0.0130 259 27014 

0.0121 309 26982 

0.0124 298 26968 

0.0123 298 26968 

0.0122 309 26982 
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Where A.G.S is Approximate Global Size. Based on 
the table, the buckling critical load for the circular plate 
from Finite Element analysis compared to the exact 
solution can be obtained when A.G.S is 0.0123 and 
Number of Elements equals to 298. In this case, the 

Critical Load 𝑞𝑟,𝑐𝑟 = 26968 𝑁/𝑚 . According to the 

Mesh Convergence criterion, the above mesh (298 
elements) is the optimum one, since the error is 
minimum and we have: 
 
26982 − 26968

26968
× 100 = 0.0519% < 5% 

Fig. 4 illustrates the Mesh Convergence Curve from 
finite element analysis of the circular plate with fixed 
edge.  

 
Fig. 4. Mesh convergence curve for the finite element model 

of the circular plate with fixed edge.  

 

The first 5 mode shapes for the buckled circular plate 
are shown in the following figures, Fig. 5. It is clear 
that by increasing mode number, the Eigenvalue 
(Critical Load) is increased.  
 
Mode Shape 1:  

 
 

Mode Shape 2: 

 
 

 

 

Mode Shape 3: 

 
 

Mode Shape 4: 

 
 

Mode Shape 5: 

 
 

Fig. 5. Mode shapes and critical loads of the circular plate 
with fixed edge.  

 

6.2. Circular plate with simply supported edge  

The model used for this study is a circular 
plate with simply supported edge, which has been 
discretized by S8R elements, S8R: An 8-node doubly 
curved thick shell, reduced integration [16]. Boundary 
configuration and typical finite element model of the 
circular plate with simply supported edge are shown in 
Figs. 6 and 7 respectively. Table 2 shows number of 
elements used to achieve optimum mesh for the 
circular plate with simply supported edge.  
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Fig. 6. Boundary configuration of the circular plate 
with simply supported edge. 

 
Fig. 7. Typical finite element model of the circular 

plate with simply supported edge. 
 

Table 2. Number of elements used to achieve 
optimum mesh of the circular plate with simply supported 

edge. 

A.G.S Number of Mesh 
Critical Load 
(𝑞𝑟,𝑐𝑟 ;  𝑁 𝑚⁄ ) 

0.0125 291 7692.9 

0.0124 298 7692.4 

0.0123 298 7692.4 

0.0122 309 7698.6 

0.0121 309 7698.6 

0.0120 309 7698.6 

0.0130 259 7697.2 

0.0140 216 7693.1 

0.0150 199 7697.3 

 

Where A.G.S is Approximate Global Size. Based on 
the table, the buckling critical load for the circular plate 
from Finite Element analysis compared to the exact 
solution can be obtained when A.G.S is 0.0123 and 
Number of Elements equals to 298. In this case, the 

Critical Load 𝑞𝑟,𝑐𝑟 = 7692.4 𝑁/𝑚 . According to the 

Mesh Convergence criterion, the above mesh (298 
elements) is the optimum one, since the error is 
minimum and we have:  
 
7698.6 − 7692.4

7692.4
× 100 = 0.0806% < 5% 

Fig. 8 illustrates the Mesh Convergence Curve from 
finite element analysis of the circular plate with simply 
supported edge.  
 

 
Fig. 8. Mesh convergence curve for the finite element model 

of the circular plate with simply supported edge. 
 

The first 5 mode shapes for the buckled circular plate 
are shown in the following figures, Fig. 9. It is clear 
that by increasing mode number, the Eigenvalue 
(Critical Load) is increased.  
 

Mode Shape 1:  

 
 

Mode Shape 2:  

 
 

Mode Shape 3:  

 
 

Mode Shape 4: 
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Mode Shape 5: 

 
Fig. 9. Mode shapes and critical loads of the circular plate 

with simply supported edge.  

 

7. Conclusion 

A finite element model was presented for this 
study. This paper reviewed the capability of the shell 
element (S8R) provided by commercialized FEA 
codes, and discussed a simple case of static finite 
element analysis. Based on the finite element 
modeling technique, the study showed admissible 
results in comparison with exact solutions for a 
circular plate with fixed edge and simply supported 
edge. For both boundary conditions, the Critical 
Buckling Load was investigated and obtained an 
acceptable result from finite element analysis. 
Comparing the values of the critical compressive 
forces for the clamped and simply supported circular 
solid plates, we can conclude that the replacement of 
the supported edges with clamped ones increases the 
critical force by a factor of 3.5. Based on the finite 
element modeling, we are able to simulate more 
complicated models in ABAQUS, which is difficult to 
present exact solutions for them to predict the critical 
buckling load.   
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