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Abstract— In this paper, development of Strict 
Differential Seeded Secant (SDSS) numerical 
iteration method for computing the semi major 
axis of a perturbed orbit based on the anomalistic 
period is presented. Specifically, the value of the 
semi major axis (a)  and the nominal mean motion 
(𝐧𝐨) of the orbit are determined based on a given 
anomalistic period of the orbit. The mathematical 
expressions, the procedure and flowchart for the 
SDSS method are presented. A numerical case 
study shows how effective the method can be 
used to determine the semi major axis along with 
the nominal mean motion of an orbit impacted by 
the oblateness of the earth.  The results for the 
case study orbit show that the nominal mean 
motion (no) is 1.4553996417E-04 rad/s while the 
mean motion (n) considering the earth oblateness 
is 1.4550264551E-04 rad/s which gives a 
difference (n-no)  of 1.3579203307E-08  (rad/s). 
Essentially, the orbit mean motion is faster with 
the oblate earth and a given anomalistic period 
(p). The results show that the required values of 
the semi axis(a)  and the nominal mean motion 
(𝒏𝒐 ) are obtained after the first iteration of the 
SDSS method. Also, the orbit semi major axis at 
𝐧 =  1.4550264551E-04  is 26598.53828 km  
whereas, at 𝐧𝐨 = 1.4548906631E-04    athe orbit 
semi major axis  is  26604.7414 km  . This gives a 
difference,  ∆𝐚  𝐨𝐟  𝟔. 𝟐𝟎𝟑𝟏𝟐 𝐤𝐦 . In essence, the 
oblate earth cause the semi major axis of the case 
study orbit to increase by =  𝟔. 𝟐𝟎𝟑𝟏𝟐 𝐤𝐦  above 
what the value that for the perfectly spherical 
earth. 
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I. INTRODUCTION 

In the study of motion of satellites on Keplerian orbits 

where the earth is assumed to be perfectly spherical, the 

mean motion (in this case, referred to as nominal mean 

motion,no) is computed as a function of two parameters, 

namely, the earth geocentric gravitational constant (μ) and 

the semi major axis (a) of the orbit [1,2,3,4,5,6,7,8].  

However, in reality, the earth is not a perfect sphere but an 

oblate spheroid with a bulge at the equator and flattening at 

the north and south poles [9,10,11,12,13,14]. The oblate 

spheroid shape of the earth affects the orbit and the motion 

of satellites in the orbit. In this case, the orbit is said to be 

perturbed [15,16,17,18,19] and the mean motion, denoted 

as n is a complex equation that includes several parameters 

among which are the orbit inclination angle (i);  earth 

geocentric gravitational constant (μ), eccentricity (e), the 

nominal mean motion, (no) and the semi major axis (a)  of 

the orbit. Furthermore, the period of the perturbed orbit is 

called anomalistic period (p) which has a simple analytical 

relationship with the mean motion of the perturbed orbit.  In 

this paper, an approach for solving for the semi major axis 

(a) and hence the nominal mean motion, (no) of a perturbed 

orbit is presented. The solution approach computes the 

mean motion (n) from the knowledge of the anomalistic 

period (p) and then uses a modified version of secant 

numerical iteration method [20,21,22,23,24,25] developed 

in this paper to compute the semi major axis and the 

nominal mean motion, (no) of the perturbed orbit.  

Specifically, the secant iteration version developed in this 

paper is called Strict Differential Seeded Secant (SDSS) 

numerical iteration method. The SDSS method requires 

only a single initial value from which it automatically 

generates a second initial value that enables it to proceed 

with the usual secant iteration. The second initial guess root 

is generated by adding a differential, (which is a small 

fraction of the available single root) to the single root 

provided for the iteration.  The term ‘strict’ here means that 

this procedure of using the differential of the single root is 

adopted in all the cycles of the secant iteration until the 

algorithm converges to the desired solution.  The detailed 

algorithm, flowchart and mathematical models associated 
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with the new algorithm are presented along with numerical 

examples. 

II.   OVERVIEW OF STRICT DIFFERENTIAL 

SEEDED SECANT NUMERICAL ITERATION 

METHOD 

Generally , the classical scant iteration requires two initial 

roots r(0) and r(1) (or  r(k)  and r(k+1) ) which will be used 

to compute the third root estimate r(2) (or r(k+2)). In the 

seeded secant, only one initial guess root is required , which 

is r(0) (or r(k) ). In the Strict Differential Seeded Secant 

(SDSS) numerical iteration method  the second root r(k+1) 

is obtained simply by adding a differential of r(0) to r(0), 

hence r(1) = r(0) + δ(r(0) where δ  is a very small fraction, 

much less than 1. In practice,    δ  is to about 0.000001 (that 

is 1 x10−6 ). When r(k+1)  =  r(k) + δ(r(k)  is used for all 

the k (where k is the iteration cycle number), the method is 

termed strict differential seeded secant. However, if r(k+1)  

=  r(k) + δ(r(k)  is used only for the initial cycle , that is , 

only when k = 0 , then the method is termed onetime 

differential seeded secant. In this second case, the classical 

secant method for finding root is applied for all k>0. In this 

paper, the strict differential seeded secant is employed in 

the determination of the semi major axis (a)  and the 

nominal mean motion (𝑛𝑜) of  an orbit which is affected by 

the oblateness of the earth. 

III.  METHODOLOGY 

Notably, in this paper, value of the semi major axis (a)  and 

the nominal mean motion (𝑛𝑜) are determined based on a 

given anomalistic period of the orbit. When the anomalistic 

period (P) is given, the orbit mean motion, denoted as n,  is 

given as; 

𝑛 =  
2𝜋

𝑃
   (1) 

Also, the nominal mean motion denoted as 𝑛𝑜 is given in 

respect of the semi major axis, (a)  as; 

𝑛𝑜 = √
𝜇

𝑎3   (2) 

In respect of 𝑛𝑜  and the semi major axis, (a), the mean 

motion, (n)  is given as; 

𝑛 = 𝑛𝑜 [1 + 
𝐾1(1−1.5sin(𝑖)2)

𝑎2(1−𝑒2)1.5 ]              (3) 

Hence,  

𝑛 = (√
𝜇

𝑎3) [1 + 
𝐾1(1−1.5sin(𝑖)2)

𝑎2(1−𝑒2)1.5 ]             (4) 

𝑛2

[1+ 
𝐾1(1−1.5sin(𝑖)2)

𝑎2(1−𝑒2)
1.5 ]

2 =
𝜇

𝑎3             (5) 

Hence; 

𝑎 = (
𝜇

𝑛2 [1 + 
𝐾1(1−1.5sin(𝑖)2)

𝑎2(1−𝑒2)1.5 ]
2

)
1/3

             (6) 

In this paper, in order to determine the nominal mean 

motion denoted as no,  the semi major axis, a is determined 

using Strict Differential Seeded Secant (SDSS) numerical 

iteration method. In the SDSS method, a function of the 

semi major axis, denoted as  f(𝑎𝑘) is used to iteratively 

compute a for a number of cycles counted using the counter 

k.  Let f(𝑎𝑘) be defined as; 

f(𝑎𝑘) = 𝑎𝑘 − (
𝜇

(
2𝜋

𝑃
)
2 [1 + 

𝐾1(1−1.5sin(𝑖)2)

(𝑎𝑘)2(1−𝑒2)1.5 ]
2

)

1/3

= 𝑎𝑘 −

(
𝜇

𝑛2 [1 + 
𝐾1(1−1.5sin(𝑖)2)

(𝑎𝑘)2(1−𝑒2)1.5 ]
2

)
1/3

               (7) 

The seeded secant method requires only one initial value, 

which in this case is denoted as 𝑎𝑜. The initial value of a is 

obtained from   𝑛𝑜 = √
𝜇

𝑎3  , where it is assumed that the 

initial value of  𝑛𝑜 = n= 
2𝜋

𝑃
; hence 𝑎𝑜  =

2𝜋

𝑃
 . Once, 𝑎𝑜  is 

obtained , then a fraction of the 𝑎𝑜  is taken as a 

perturbation value  which is added to the 𝑎𝑜   to obtain the 

second value, 𝑎1 , as required by the classical secant 

method. With 𝑎𝑜 and  𝑎1 the next value 𝑎2  is computed by 

the secant method and the results is checked in respect of 

the set tolerance error, Є.   

Accordingly, the flowchart for the Strict Differential 

Seeded Secant (SDSS) numerical iteration method is given 

in Figure 1 whereas the algorithm is stated as follows: 

Step 1: The initial values of key parameters are defined.  

Step 1.1: Initialize   a  

𝑎𝑜  = (
𝜇

𝑛2)
1/3

= (
𝜇

(
2𝜋

𝑃
)
2)

1/3

              (8) 

Step 1.2: Initialize the counter, k 

 K = 1           (9) 

Step 1.3: Initialize the perturbation parameter, δ 

 δ = 0.000001           (10) 

Step 1.4: Initialize the error tolerance, ∈ 

 ∈ = 0.0001           (11) 

Step 2: Compute the second root value 𝑎𝑘  from the seed 

value 𝑎𝑘−1; 

𝑎𝑘  = (1 +  δ)𝑎𝐾−1                (12) 

Step 3: Compute 𝐟(𝐚𝐤−𝟏) 

𝐟(𝐚𝐤−𝟏) =  𝑎𝑘−1 − (
𝜇

𝑛2 [1 + 
𝐾1(1−1.5sin(𝑖)2)

(𝑎𝑘−1)
2(1−𝑒2)1.5]

2

)
1/3

  

  (13) 

Step 4: Compute 𝐟(𝐚𝐤 ) 

 

𝐟(𝐚𝐤) =  𝑎𝑘 − (
𝜇

𝑛2 [1 + 
𝐾1(1−1.5sin(𝑖)2)

𝐚𝐤
2(1−𝑒2)1.5 ]

2

)
1/3

   (14) 

Step 5: Compute 𝐚𝐤+𝟏 

ak+1 =
(ak−1)f(ak)−(ak)f(ak−1) 

 f(ak )−f(ak−1)  
   (15) 

Step 6: Compute 𝐟(𝐚𝐤+𝟏) 

𝐟(𝐚𝐤+𝟏) = 𝑎𝑘+1 − (
𝜇

𝑛2 [1 + 
𝐾1(1−1.5sin(𝑖)2)

(𝐚𝐤+𝟏)
2(1−𝑒2)1.5]

2

)
1/3

  

 (16) 

Step 7: Check if the required value of 𝐚 has been obtained 

Step 7.1: The response when the required value of 𝐚 has 

been obtained 

Step 7.1.1: 

If | f(ak+1 ) | ≤  𝜖  (where 𝜖  is error 

tolerance) then the actual value of 𝑎  has 

been determined an it is 𝑎𝑘+1. At this point, 

𝑛𝑜is computed  using  the expression  

Step 7.1.2: Compute 𝑛𝑜 

 𝑛𝑜 = √
𝜇

𝑎3 = √
𝜇

(ak+1 )
3   (17) 

Step 7.1.3: Output results 

Output  k , ak+1  ,  𝑛𝑜 

Step 7.2: The response when the required value of 𝐚 has not 

been obtained 
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If however, | f(ak+1 ) | >  ϵ , then the actual 

value of a has not been found; in that case, 

the following steps are taken; 

Step 7.2.1: 

ak  = ak+1   (18) 

Step 7.2.2: 

 k = k + 1  (19) 

Step 7.2.3: 

Repeat step 2  to step 7 

 

 
Figure 1  The flowchart for  Strict Differential Seeded Secant (SDSS) numerical iteration method 

 

IV.  RESULTS AND DISCUSSION 

The Strict Differential Seeded Secant (SDSS) numerical 

iteration method is used to determine the semi axis(a)  and 

the nominal mean motion (no) of a case study  orbit with 

the parameters given in Table 1. The result of the Strict 

Differential Seeded Secant (SDSS) numerical method for 

the computation of ak and no is shown in Table 2.The 

results show that the nominal mean motion (no) is 

1.4553996417E-04 rad/s while the mean motion (n) 

considering the earth oblateness is 1.4550264551E-04 rad/s 

which gives a difference (n-no)  of 1.3579203307E-08  

(rad/s). Essentially, the orbit mean motion is faster with the 

oblate earth and a given anomalistic period (p). The results 

show that the required values of the semi axis(a)  and the 

nominal mean motion ( 𝑛𝑜 ) are obtained after the first 

iteration of the SDSS  method. 

The change in mean motion, ∆n  and the change in orbit 

semi major axis, ∆a   are computed from the results in  

Table 2 a follows; 

Change in mean motion, ∆n where ; 

∆n =  n-no  (rad/s)  = 1.3579203307E-08  (rad/s)  (20) 
 

Change in orbit semi major axis, ∆a  where; 
At  no =  n = 1.4550264551E − 04;   

  a = a n =  26598.53828 km    (21) 

At  no =  1.4548906631E − 04;  
  a = a no =   26604.7414 km    (22) 

 ∆a  =  a 𝐧𝐨 – a n  (23) 

Hence; 

∆a  =  26604.7414 − 26598.53828 =  6.20312 km  

Also, the orbit semi major axis at n = 1.4550264551E −
04 = a n =  26598.53828 km   whereas, at no =

  

𝒂𝒐  = (
𝝁

𝒏
)
𝟏/𝟑

𝒂𝒏𝒅         𝐤 = 𝟏   

Start 

Input    𝛜  

  𝐚𝐤 = (𝟏+  𝛅)𝐚𝐤−𝟏 

𝐟(𝐚𝐤) =  𝑎𝑘 −  
𝜇

𝑛2
 1 + 

𝐾1(1 − 1.5sin(𝑖)2)

𝐚𝐤
2(1 − 𝑒2)1.5

 

2

 

1/3

 

ak+1 =
ak−1 ∗ f(ak) − ak ∗ f(ak−1) 

 f(ak ) − f(ak−1)  
 

  𝐟(𝐚𝐤−𝟏) =  𝑎𝑘−1 − (
𝜇

𝑛2
[1 + 

𝐾1(1−1.5sin(𝑖)2)

(𝑎𝑘−1)
2(1−𝑒2)1.5

]
2

)
1/3

  

𝐟(𝐚𝐤+𝟏) = 𝑎𝑘+1 − (
𝜇

𝑛2
[1 + 

𝐾1(1−1.5sin(𝑖)2)

(𝐚𝐤+𝟏)
2(1−𝑒2)1.5

]
2

)
1/3

and    𝑛𝑜 = √
𝜇

(ak+1 )
3
 

𝑛 = 
2𝜋

𝑃
   𝐚𝐧𝐝 𝛅 = 𝟎.𝟎𝟎𝟎𝟎𝟎𝟏 

  

| 𝐟(ak+1 ) | <  𝜖 

NO YES 

Output k, ak+1 ,  𝐟(ak+1 )  𝑎𝑛𝑑  𝑛𝑜 

 ak  = ak+1  

K = K + 1 

Stop 
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 1.4548906631E − 04;    a = a no =   26604.7414 km   . 

This gives a difference,  ∆a  =  a no  −  a n  =
 6.20312 km. In essence, the oblate earth cause the semi 

major axis of the case study orbit to increase by =

 6.20312 km  above what the value that for the perfectly 

spherical earth. 

 

 

 

Table 1  The parameters of a case study  orbit 

S/N PARAMETER SYMBOL VALUE UNIT 

1 Eccentricity e 0.002 
 

2 
Earth Geocentric Gravitational 
Constant 

𝜇 
3.986005 x1014 𝑚3 𝑠2⁄  

3 Inclination Angle i 0 degree 

4 Anomalistic Period P 12 hour 

5 Constant 𝐾1 66,063.1704 𝑘𝑚2 
 

Table 2  The result of the Strict Differential Seeded Secant (SDSS) numerical method 

 
Orbit semi 
major axis 

Estimation error in  
ak 

Acceptable Estimation 
error in  ak 

Nominal mean motion 

(no) 
Mean motion (n ) 

 

Cycle ak  (km) f(ak)  (km) Є no  (rad/s) n  (rad/s) n-no  (rad/s) 

0 26598.53828 -6.2038947E+00 1.00E-03 1.4553996417E-04 1.4550264551E-04 -3.7318657097E-08 

1 26604.7414 -2.6697671E-07 1.00E-03 1.4548906631E-04 1.4550264551E-04 1.3579201117E-08 

2 26604.7414 0.0000000E+00 1.00E-03 1.4548906631E-04 1.4550264551E-04 1.3579203307E-08 

3 26604.7414 0.0000000E+00 1.00E-03 1.4548906631E-04 1.4550264551E-04 1.3579203307E-08 

4 26604.7414 0.0000000E+00 1.00E-03 1.4548906631E-04 1.4550264551E-04 1.3579203307E-08 

 

V.   CONCLUSION 

A Strict Differential Seeded Secant (SDSS) numerical 

iteration method is presented for computing the value of the 

semi major axis along with the nominal mean motion of an 

orbit when the impact of the earth oblateness is considered. 

The mathematical expressions, the procedure and flowchart 

for the SDSS  method are presented. As regards root 

finding numerical solutions, the perturbation, in this case, 

indicates a fraction of the current value of the root that is 

added to get a second root that is used to compute the next 

root estimate. The numerical case study shows how 

effective the method can be used to determine the semi 

major axis along with the nominal mean motion of an orbit 

impacted by the oblateness of the earth.  
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