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Abstract— This study presents sliding mode 
control for autonomous underwater vehicles. In 
the study, effort is made to eliminate the 
chattering effect which is harmful to the system 
actuators. Accordingly, a filtered sliding mode 
control technique is adopted. In order to ensure 
the existence of sliding mode, first, a high level 
commutation control is produced which 
commutes between two extreme values. Secondly, 
an integrator which acts as a filter is placed at the 
output of the control signal. The entire system are 
then modeled and simulated on Mathlab software. 
The results obtained show that at the output of the 
sliding mode controller, there is high level of 
chattering which is the problem tackled in this 
study. However, at the output of the integrator, 
smooth signal amplitude is obtained. Essentially, 
the low pass filter effectively removed the noise 
signal that causes the chattering. The results 
published in similar studies which are reviewed in 
this paper showed that rough amplitude is present 
in their system response plots and those rough 
amplitudes are caused by noise. On the other 
hand, with the approach presented in this paper, 
by applying the low pass filter to the sliding mode 
control, the noise is filtered out and the system 
response plot has smooth amplitude. Hence, the 
approach employed in this study effectively 
addressed the challenges present in the previous 
related studies. 
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I. INTRODUCTION 

Some decades ago, there was a strong movement 

towards the development of autonomous underwater 

vehicles (AUVs) and remotely operated vehicles (ROV) 

[1,2,3,4]. These two classes of underwater vehicles are 

intended to provide researchers with simple, long-range, 

low-cost, rapid response capability to collect pertinent 

environmental data. There are numerous applications for 

AUV and ROV, including underwater structure inspection, 

oceanographic surveys, operations in hazardous 

environments, and military applications. In order to fulfill 

these objectives, the vehicles must be provided with a set of 

controllers assuring the desired type of autonomous 

operation and offering some aid to the operator, for vehicles 

which can be tele-operated [5,6,7].  

In any case, the automatic control of underwater 

vehicles presents a difficult design problem due to the 

nature of the dynamics of the system to be controlled. 

Controllers based on the simple models of vehicle mass and 

drag usually yield disappointing performances [8]. The 

general underwater vehicle control system design problems 

include a variety of nonlinearities and modelling 

uncertainties. These include hydrodynamic nonlinearities, 

inertial nonlinearities, and problems related to coupling 

between the degrees of freedom (DoF). Simple control 

techniques such as proportional, integral and derivative 

(PID) control have been more commonly used because of 

the relative ease of implementation. A PID tracking 

controller has been implemented successfully on an 

unmanned underwater vehicle (UUV) [9,10,11,12,13]. The 

PID controller is an extension of the control technique of 

computed torque control which is used in robotics. Simple 

linear quadratic Gaussian controllers have also been 

developed [14]. Despite the existence of these simple 

controllers, other more sophisticated control techniques 

have also been recently utilized for UUVs. Fuzzy logic 

controllers (FLCs) have been proposed and implemented 

with success on UUVs in several cases [15]. The different 

control techniques discussed have more commonly been 

used in combination with one another. For instance, a 

neuro-fuzzy controller has been developed by [16] for 

modelling attitude control for an UUV. This involved using 

a combination of neural networks and fuzzy logic. Despite 

all these however, the desired efficacy has not been 

realized. Particularly, the chattering effect which has 

extreme adverse effect on the system actuators has not been 

effectively addressed by any of these methods. 

Consequently, this paper presents an filtered sliding mode 

control (FSMC) technique which uses the a low pass filter 

to eliminate the chattering effect which is caused by noise 

that is present in the control variable. The relevant 

mathematical models and numerical computations are used 

to demonstrate the effectiveness of the (FSMC) technique 

in eliminating the chattering effect UUV.  
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II. METHODOLOGY 

A.  SLIDING MODE STRUCTURES 

The sliding mode structure where commutations occur in 

the control unit with the addition of the equivalent control 

was adopted in this research. In order to ensure the 

existence of the sliding mode, a high level commutation 

control was produced. Also, the control structure depicted 

in Figure 1 is adopted where an integrator is placed in front 

of the system to be controlled, specifically to ensure that 

chattering is eliminated. A sliding mode control, 𝜔 is then 

derived for the extended system (the original system plus 

the integrator). The control signal, 𝜔is not “chattering-

free”, but the true control signal u going into the system is 

smooth since the high frequency chattering in 𝜔is filtered 

out by the integrator, which acts as a low pass filter. With 

such a design, the chattering reduction was achieved by 

using the low pass filter and at the same time the control 

accuracy is maintained.  

 

Figure  1: Filtered Sliding Mode Control (FSMC) 

Source: Designed by the Researcher 

    As shown in Figure 1 the system consists of three 

primary blocks which were nested to form two secondary 

blocks. The primary blocks are, the sliding mode control 

(SMC) block, the integrator (low pass filter) block and the 

system block. The sliding variable in the sliding mode 

control design is chosen such that the control input showed 

up in the time derivative of the sliding variable. In this way, 

the control input is able to influence how the sliding 

variable evolved. In other words, the time derivative of the 

new sliding variable for the extended system contains the 

sliding mode control, 𝜔. This shows that the new sliding 

variable for the extended system contains the integration of 

𝜔which is the true control signal, u. Since the disturbance, 

dis expected in the system in the same place as the control 

signal, u, the output of the system is also expected to 

contain the elements the disturbance, d and this made 

evaluation of the sliding variable difficult. This formed a 

problem that is unique to the low-pass-filtering design. A 

variable structure estimator is then deployed to estimate the 

sliding variable; this is based on the assumption that the 

system state is uniformly bounded before proving the 

system stability. 

 

B. THE SLIDING VARIABLE DESIGN 

The control structure of the Filtered Sliding Mode 

Control is depicted in Figure 1. An integrator was 

introduced before the system and 𝜔 = 𝑢̇ was treated as the 

control variable for the extended system. A switching 

sliding mode control law was chosen for 𝜔to suppress the 

effects of disturbance, d. In other words, the new control 

design removes chattering by filtering the control signal, 

hence, the control structure in (Figure 1) was termed the 

filtered sliding mode control (FSMC). The sliding mode 

control design for a nonlinear system with uncertainty was 

used and it is given as: 

 𝑥 ̇ = 𝐴𝑥 + 𝐵(𝑢 + 𝑑)  (1) 

 

Figure  1: Filtered Sliding Mode Control (FSMC) 

Source: Designed by the Researcher 

where: 𝑥 ∈  𝑅𝑛  is the system state, 𝑢 ∈  𝑅1  is the scalar 

control input, and 𝑑 is the external disturbance. The system 

state, 𝑥  is accessible for measurement, and (A, B) is 

controllable. For simplicity, it the system uncertainty d is 

assumed to be a bounded external disturbance and the 

sliding variable is given as follows; 

 
𝜎 =  𝑧̇ +  𝜆𝑧

𝑧 = 𝐶𝑥
}   (2) 

where: 𝜆 is a positive constant, 𝜎 is the sliding variable and 

the row vector 𝐶 ∈  𝑅1×𝑛 was chosen such that (A, B, C) is 

of relative degree one and the (n – 1) zeros of the system 

(A, B, C) are in the stable location. When 𝜎 tends to zero, 

the system state 𝑥 converges to zero. Combining Equation 

(1) and Equation (2) gives: 

 𝜎 = 𝐶𝐴𝑥 + 𝐶𝐵(𝑢 + 𝑑) +  𝜆𝐶𝑥  (3) 

The time derivative of the sliding variable (Equation (1)) is 

given as follows; 

𝑥̈ = 𝐴𝑥̇ + 𝐵(𝑢̇ + 𝑑̇)   (4) 

Substituting Equation (1) into Equation (4) gives; 

 𝑥̈ = 𝐴2𝑥 + 𝐵𝐴(𝑢 + 𝑑) + 𝐵(𝑢̇ + 𝑑̇)  (5) 

The derivative of the sliding variable 𝜎 is taken to be of the 

form; 

 𝜎̇ =  𝑧̈ +  𝜆𝑧̇  (6) 

In order to  derive the time derivative of the sliding 

variable), Equation (1) and Equation (5) are substituted into 

Equation (6)  to give;    

  

𝜎̇ = 𝐶[𝐴2𝑥 + 𝐵𝐴(𝑢 + 𝑑) + 𝐵(𝑢̇ + 𝑑̇)] +  𝜆𝐶[𝐴𝑥 +

𝐵(𝑢 + 𝑑)]   (7) 

Multiplying out and collecting the like terms in Equation 

(7)  and  substituting 𝑢̇ =  ωinto Equation (7) gives; 

𝜎̇ =  (𝐶𝐴2 +  𝜆𝐶𝐴)𝑥 + (𝐶𝐵𝐴 +  𝜆𝐶𝐵)𝑢 + 𝐶𝐵ω +
(𝐶𝐵𝐴 +  𝜆𝐶𝐵)𝑑 + 𝐶𝐵𝑑̇ (8) 

Obviously, the control variable ω =  𝑢̇ appears in the time 

derivative of the sliding variable, 𝜎̇ which means that the 

evolution of 𝜎̇  can be controlled by properly choosing the 

control variable, ω . However, there was a challenge 

according to Equation (3), the expression of 𝜎̇ contains the 

unknown disturbance term, d. Therefore, it becomes 

difficult to evaluate the sliding variable, 𝜎̇. In order to solve 

this problem, the disturbance estimator proposed in [17] is 

used to estimate the disturbance d. With an estimate of d, it 

becomes possible to obtain an estimate of the sliding 

variable, 𝜎̇ through Equation (3). As a result, an estimator 

for the unknown disturbance 𝑑  is derived based on the 
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scalar variable, z defined in Equation (2) where the scalar 

variable, z   satisfies the following differential equation; 

𝑧̇ = 𝐶𝐴𝑥 + 𝐶𝐵(𝑢 + 𝑑) (9) 

An estimate of z is taken to be  𝑧̂, and the estimator error 

denoted as e is given as follows; 
𝑒 = 𝑧 − 𝑧̂

𝑧 = 𝐶𝑥
}    (10) 

The governing equation of 𝑧̂ is given as;  

𝑧̇̂ = 𝐶𝐴𝑥 + 𝛽𝑒 + 𝐶𝐵(𝑢 + 𝑣)

𝑣 =  𝜌 (
𝑒

|𝑒|+ 𝜀
)

}  (11) 

where: 𝛽 is a positive constant, 𝜌 an estimator gain which 

must be larger than the disturbance upper bound, D0, and 𝜀 

is a positive constant close to zero. The estimate of the 

disturbance,  dis given as; 

𝑑̂ =
𝛽

𝐶𝐵
𝑒 + 𝑣 =

𝛽𝑒

𝐶𝐵
+ 𝜌

𝑒

|𝑒|+ 𝜀
   (12) 

Then, 𝜎 is approximated as follows; 

𝜎̂ = 𝐶𝐴𝑥 + 𝐶𝐵(𝑢 + 𝑑̂) +  𝜆𝐶𝑥 (13) 

The effectiveness of the disturbance estimator is assessed in 

terms of the values of the disturbance estimation error, 

which is given as 𝑑 − 𝑑̂ .  Accordingly, the disturbance 

estimation error will become arbitrarily small if the gain 𝜌 

in is sufficiently large.Now, from Equation (10), 𝑒̇ can be 

given as; 

𝑒̇ =  𝑧̇ − 𝑧̇̂  (14) 

Substituting Equation (9) and Equation (12) into Equation 

(14) gives; 

𝑒̇ = [𝐶𝐴𝑥 + 𝐶𝐵(𝑢 + 𝑑)] − [𝐶𝐴𝑥 +  𝛽𝑒 + 𝐶𝐵(𝑢 + 𝑣)] =
 −𝛽𝑒 − 𝐶𝐵(𝑣 − 𝑑) (15) 

Substituting the value of 𝑣  from Equation  (11)into 

Equation (15) gives; 

𝑒̇ =  −𝛽𝑒 − 𝐶𝐵(𝜌
𝑒

|𝑒|+ 𝜀
− 𝑑) = 𝐶𝐵𝑑 − (𝛽𝑒 + 𝐶𝐵𝜌

𝑒

|𝑒|+ 𝜀
)  (16) 

It is then checked to ensure that both 𝑒  and 𝑒̇  become 

arbitrarily small if 𝜌 is sufficiently large. In that case, from 

Equation (16); 

𝑒̇ = 𝐶𝐵(𝑑 − 𝑑̂) (17) 

This implies that 𝑒̇ tends to zero as 𝑑 − 𝑑̂  tends to zero, 

hence the effectiveness of the disturbance estimation is 

ascertained. 

C. CONTROL VARIABLE DESIGN 

In the filtered sliding mode control, the control 

variable ω is used to drive the sliding variable, 𝜎 as close to 

zero as possible in the face of system uncertainties. For this 

purpose, the choice of  𝑢̇ =  ω is made. Hence;  

𝑢̇ =  −(𝐶𝐴2 +  𝜆𝐶𝐴)𝑥 − (𝐶𝐵𝐴 +  𝜆𝐶𝐵)𝑢 −  𝛾𝜎 −  𝛿𝑠𝑔𝑛(𝜎) (18) 

where: 𝛾 > 0, 𝑠𝑔𝑛(. )  is the signum function, and𝛿  is an 

upper bound of uncertainty |∆𝑝|, with  

 ∆𝑝 = (𝐶𝐵𝐴 +  𝜆𝐶𝐵)𝑑 +  𝑑̇  (19) 

Based on the preceding mathematical expressions, it is 

impossible to evaluate the sliding variable, 𝜎 due to the 

uncertainty, d involved. Hence, to implement the proposed 

control, the estimate, 𝜎̂ is used in place of 𝜎. On this note, 𝑢̇ 

is given as; 

𝑢̇ =  ω =  −(𝐶𝐴2 +  𝜆𝐶𝐴)𝑥 − (𝐶𝐵𝐴 +  𝜆𝐶𝐵)𝑢 −  𝛾𝜎̂ − 𝛿𝑠𝑔𝑛(𝜎̂) (20) 

where: 𝜎̂ is defined in Equation (13). Then, from Equation 

(20), the actual  input to the system is given by: 

 
𝑢 = 𝐻(𝑠)ω 

𝐻(𝑠) =
1

𝑠

}   (21) 

Even though the switching control, ω  in Equation (20) 

contains high-frequency chattering, the high-frequency 

chattering is filtered by the low-pass filter, H(s). The 

control input, u to the  system is then obtained by direct 

integration which makes it to become chattering free. 

D. VALIDATION OF THE SLIDING VARIABLE 

 In order to prove the effectiveness of the 

disturbance estimator given by Equation (12), theorem 1 is 

propounded. 

Theorem 1: The disturbance estimation error,  𝑑 − 𝑑̂ , 

where 𝑑̂ is given by Equation (12), will become arbitrarily 

small if the estimator gain 𝜌 in Equation (11) is sufficiently 

large. 

Proof: Subtracting Equation (11) from Equation (9)  yields: 

𝑒̇ =  −𝛽𝑒 − 𝐶𝐵(𝜌
𝑒

|𝑒|+ 𝜀
− 𝑑).  

It was stated in Equation 17) that 𝑒̇ =  𝐶𝐵(𝑑 − 𝑑̂) . This 

implies that 𝑒̇ is driven to zero as  𝑑 − 𝑑̂ tends to zero; this 

proves the effectiveness of disturbance estimation. 

E. VALIDATION OF THE CONTROL VARIABLE 

 In order to prove the stability of the control 

variable, theorem 2 is propound. 

Theorem 2: The proposed filtered sliding mode control in 

Equation (20) practically stabilizes the system shown in 

Equation (1) with bounded control, u in the sense that the 

system state is asymptotically driven into a residual set 

around the origin, with the size of residual set becoming 

arbitrarily small when the estimator gain, 𝜌 in the 

disturbance estimator shown in Equation (11) becomes 

sufficiently large. 

Proof: Denote 𝜎̃ =  𝜎 − 𝜎̂, where 𝜎 and 𝜎̂ are as given by 

Equation (3) and Equation (13) respectively. By inspection, 

it is obvious that 𝜎̃ = 𝐶𝐵(𝑑 − 𝑑̂) . In order to study the 

evolution of 𝜎, a Lyapunov function,  𝑉 =
1

2
𝜎2 is selected 

and its time derivative under the proposed condition, ω in 

Equation (20) is checked. 

 𝑉̇ =  𝜎𝜎̇  (22) 

 𝑉̇ =  𝜎[(𝐶𝐴2 +  𝜆𝐶𝐴)𝑥 + (𝐶𝐵𝐴 +  𝜆𝐶𝐵)𝑢 +

𝐶𝐵ω + (CBA +  𝜆𝐶𝐵)𝑑 + 𝐶𝐵𝑑̇] (23) 

𝑉̇ =  𝜎[−𝛾𝜎̂ −  𝛿𝑠𝑔𝑛(𝜎̂) + ∆𝑝]   (24) 

𝑉̇ =  𝜎[−𝛾(𝜎 − 𝜎̃) −  𝛿𝑠𝑔𝑛(𝜎̂) + ∆𝑝]   (25) 

 𝑉̇ =  − 𝛾𝜎2 +  𝛾𝜎𝜎̃  + 𝜎[−𝛿𝑠𝑔𝑛(𝜎̂) + ∆𝑝] 
 (26) 

where: ∆𝑝 is as given in Equation (19), and 𝜎̂ =  𝜎 − 𝜎̃ is 

used to obtain Equation (25) from Equation (24). Suppose 
|𝜎| > |𝜎̃|; in this case, 𝑠𝑔𝑛(𝜎̂)  =  𝑠𝑔𝑛(𝜎 − 𝜎̃) = 𝑠𝑔𝑛(𝜎). 

Equation (26) then becomes:  

𝑉̇  ≤  −𝛾𝜎2 +  𝛾𝜎𝜎̃ − |𝜎|(𝛿 − |∆𝑝|) (27) 

𝑉̇  ≤  −𝛾𝜎2 +  𝛾𝜎𝜎̃  (28) 

𝑉̇  ≤  −𝛾|𝜎|2 +  𝛾|𝜎|𝜇 (29) 

Where Equation (28) results from the design choice 

𝛿 > |∆𝑝|, and in Equation (29), 𝜇 as an arbitrarily small 

number is there due to the fact that 𝜎̃ = 𝐶𝐵(𝑑 − 𝑑̂) 

becomes arbitrarily small asymptotically. From Equation 

(29), it is obvious that lim𝑡→∞|𝜎|  ≤  𝜇, that is 𝜎 becomes 

arbitrarily small asymptotically. 

E. PROOF OF CONCEPT 

 The system given in Equation (1) , where  𝑥̇ =
𝐴𝑥 + 𝐵(𝑢 + 𝑑)  is considered for the numerical 

computation. The parameters are taken from (Vervoort, 

2009) as follows;  
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𝐴 =  [
2 0
1 0

], 𝐵 =  [
1
0

] ,  𝑑 = 0.9sin(628𝑡)and 𝑑𝑚𝑎𝑥 =

0.9 , the state feedback gain 

𝐾 =  [83.88 112.91 52.71 15.10] , small boundary 

layer 𝜀1 = 0.5 , 𝜌1 = 1.2 , 𝜆 = 2 , 𝛽 = 100 , 𝛿 = 16.08 , 

𝜎 = [1 1], 𝐶 =  [1 1] and  𝜇 = 0.5. These parameters 

are computed using Matrix Laboratory (MATLAB).  

III. RESULTS AND DISCUSSION 

The phase plane trajectory plot is shown in Figure 

2 . From the phase plane trajectory plot, it is seen that the 

trajectory starts from the initial point (1, 1), move towards 

the switching surface 𝑥1 + 𝑥2 = 0 , then slide along the 

surface to reach the equilibrium point 𝑥 = 0. The state of 

system response is presented in Figure 3 and Figure 4.  

According to Figure 3 and Figure 4, both signal 𝑥1 and 𝑥2 

reach 0 after about 7 seconds. Also, the trajectory of 𝑥1 plot 

in Figure 3 reaches the switching surface when the time is 

approximately 1.4 seconds. 

 

 

Figure 2: Phase plane trajectory of the system response for 𝒙𝟏(𝟎) =  𝒙𝟐(𝟎) = 𝟏 as initial condition 

 

Figure 3: State 𝒙𝟏 of the system response for 𝒙𝟏(𝟎) = 𝟏 

 

 

Figure 4: State 𝒙𝟐 of the system response for 𝒙𝟐(𝟎) = 𝟏 

The control signal response is shown in Figure 5. In Figure 5, the control signal at one instant is a positive number 

and at another instant is a negative number. This is due to the use of sign function in the control law. Switching between 

positive and negative small number of 𝜎 will cause the control signal 𝑢(𝑡) to fluctuate along the envelope of the signal, with 

the fluctuation amplitude of 1.4 units as confirmed from the plot. 
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Figure 5: Control signal of the system response for 𝒙𝟏(𝟎) =  𝒙𝟐(𝟎) = 𝟏 as initial condition 

 Simulation result for the phase plane trajectory 

with different initial conditions given as 𝑥1(0), 𝑥2(0) ≤ 2 

is as shown in Figure 6. 

 

Figure 6: Phase plane trajectory of the system response for the initial conditions given as  𝒙𝟏(𝟎), 𝒙𝟐(𝟎) ≤ 𝟐 

In Figure 6, the trajectories start from the initial 

conditions and move towards the switching surface. The 

state of the system response for the same initial conditions 

given as 𝑥1(0), 𝑥2(0) ≤ 2 is shown in Figure 7. The y-axis 

represents the states 𝑥1 and 𝑥2 while the x-axis represents 

time. 
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Figure 7: State 𝒙𝟏 and 𝒙𝟐 of the system response for different 𝒙𝟏(𝟎) and 𝒙𝟐(𝟎) as initial conditions 

 

It is observed in Figure 7 that the state of the system 

response is driven towards the equilibrium point in the 

switching surface for any initial condition. The control 

signal response for the given initial condition 𝑥1(0),
𝑥2(0) ≤ 2 is presented in the sub plots in Figure 8. 
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Figure 8: The control signal response for the given initial condition 𝒙𝟏(𝟎), 𝒙𝟐(𝟎) ≤ 𝟐 

Just as it was observed in Figure 4, Figure 7 also shows 

that the control signal at one instant is a positive number, 

and at another instant is a negative number. This is due the 

use of sign function in the control law. However, if the 

system is assumed to be an ideal one, the amplitude of the 

switching signal tends to zero, as shown in Figure 9. 

 
Figure 9: Sliding mode control without noise 

 

The parameters used for the simulation were taken from 

(Vervoort, 2009). In Figure 9, the trajectory of the control 

signal swings and settles around zero. The signal remains 

on the surface for all 𝑡 ≥ 5 seconds. This stability of the 

signal around the equilibrium point is possible due to the 

fact that the system is assumed to be ideal with no noise 

element. With this conception, many control approaches 

will work. For instance, a similar result as shown in 

(Vervoort, 2009), where boundary layer technique was used 

for the design. Unfortunately, noise is inevitable in the real 

world design; this implies that the control signal will 

always tend to move away from the equilibrium region. 

This scenario requires a robust control to keep the control 

signal in the equilibrium region. The parameter chosen for 

the noise is a sinusoidal function and it is given as 𝑑 =
cos(2𝑡). In Figure 4 and Figure 7, it is obvious that the 

trajectory of the signal is not as close to the equilibrium 

point as when there was no noise in the system. In the real 

sense, when noise is introduced to the system, the trajectory 

drifts away from the equilibrium region. The control law 

was synthesized to drive this error to zero to ensure that the 

trajectory returns as soon as possible to equilibrium. This 

routine causes the trajectory to assume a zigzag path, and 

oscillates in high frequency. As seen in Figure 5  and 

Figure 8, the trajectory assumes uniform amplitude which 

minimizes the chattering phenomenon. The results 

published in similar studies, [18] and [19] showed that 

rough amplitude is present in their system response plots 

and those rough amplitudes caused by noise do cause 

severe harmful effect to the system’s actuators. On the 

other hand, with the approach presented in this paper, by 

applying a filter to the sliding mode control, the noise is 

filtered out and the system response plot has smooth 

amplitude. Hence, the approach employed in this study 

effectively addressed the challenges present in previous 

related studies. 

IV.   CONCLUSION 

In this paper, a filtered sliding mode control technique is 

used to eliminate the chattering effect which is harmful to 

the system actuators of autonomous underwater vehicles. 

The filtered sliding mode control technique adopted in this 

study has proven its robustness based on the results 

obtained. The new design required estimation of the sliding 

variable since the value of disturbance may not be exactly 

known on real time, and this has been achieved by the use 

of a disturbance estimator. In order to optimize chattering 

reduction, sufficiently large disturbance estimator gain was 

necessary. Based on the selected parameters for the 

simulations, unnecessary overshoots were removed. It is 

obvious that with the given control law, the system 

trajectories are always forced towards the equilibrium point 

on the sliding surface given any initial values.  

 

REFERENCES 

1. Slotine, J. E. (1991). Application of Sliding Mode 

Control to Autonomous Underwater Vehicles.   Allen 

Press, California, pp. 52 – 71. 

2. Blidberg, D. R. (2001, May). The development of 

autonomous underwater vehicles (AUV); a brief 

summary. In IeeeIcra (Vol. 4, p. 1). 

3. Smallwood, D., Bachmayer, R., & Whitcomb, L. 

(1999, September). A new remotely operated 

underwater vehicle for dynamics and control 

research. In Proceedings of the 11th International 

Symposium on Unmanned Untethered Submersible 

Technology (pp. 370-377). 

4. Yusoff, M. A. M., &Arshad, M. R. (2013). 

Development of a Remotely Operated Vehicle 

(ROV) for underwater inspection. Jurutera, 2, 10-13. 

5. Fong, T., & Thorpe, C. (2001). Vehicle teleoperation 

interfaces. Autonomous robots, 11(1), 9-18. 

6. Reshmi, K. R. G., &Priya, P. S. Design and Control 

of Autonomous Unerwater Vehicle for Depth 

Control Using LQR Controller.International Journal 

of Science and Research (IJSR)Volume 5 Issue 7, 

July 2016 Available at : 

https://pdfs.semanticscholar.org/7b41/a7841b26ad89

a6d48d63b9bd359fd74c560e.pdf Accessed on 10th 

July 2018 

7. Levant, A. (1999). Underwater Vehicle Behavior and 

their Incorporation into Control System Design. 

Beijing Qing, 16(28): 74 - 91. 

8. Goheen, K. R. and Jefferys E.R. (2009). Application 

of Alternative Modelling Techniques to RoV 

Dynamics. Talanta, 14(10): 1302-1309. 

9. Kawamura, L. Z. (1994). From First Order to 

Higher Order Sliding Mode. Prentice-Hall, London, 

pp. 212 -  280. 

10. Gonzalez, L. A. (2004). Design, modelling and 

control of an autonomous underwater vehicle. BE 

Thesis, The University of Western Australia, 

Australia. 

11. Yildiz, Ö.,Gökalp, R. B., & Yilmaz, A. E. (2009, 

November). A review on motion control of the 

underwater vehicles. In 2009 International 

Conference on Electrical and Electronics 

Engineering-ELECO 2009 (pp. II-337). IEEE. 

12. Lea, R. K., Allen, R., & Merry, S. L. (1999). A 

comparative study of control techniques for an 

underwater flight vehicle. International Journal of 

Systems Science, 30(9), 947-964. 

13. Watson, S. A., & Green, P. N. (2014). Depth control 

for micro-autonomous underwater vehicles 

(μAUVs): Simulation and experimentation. 

http://www.scitechpub.org/


Science and Technology Publishing (SCI & TECH) 

ISSN: 2632-1017 

Vol. 2 Issue 12, December - 2018 

www.scitechpub.org 

SCITECHP420152 617 

International Journal of Advanced Robotic Systems, 

11(3), 31. 

14. Plotnik, A. M. and Rock, S. M. (2007). Multi-sensor 

Approach to Autonomous Underwater   Vehicle 

Tracking. Heinemann Educational Books, London, 

pp. 76 - 152. 

15. Yokto, L. Y. (2005). Sliding Mode Control for Non 

Linear Systems. Talanta, 3(6): 22 – 54. 

16. Kheuz, L. C. (2003). Problem Identification for 

Underwater Remotely Operated Vehicle. Talanta, 

2(5): 12 – 24. 

17. Bartolini, G. and Pydynowski, P. (2006). An 

improved Chattering Free Scheme for  Uncertain  

Dynamical Systems. Mainland Press, 12(14): 54 – 

72. 

18. Vervoort, J. H (2009). Modelling and control of 

Unmanned Underwater Vehicle. Springer  Verlag, 

New York, pp. 45 - 83. 

19. Moldoveanu, S. R. (2014). Sliding Mode Controller 

Design for Robot Manipulators. Transilvernia, 26 – 

39. 

 

http://www.scitechpub.org/

