# Google Map-Based Rooftop Solar Energy Potential Analysis For University Of Uyo Main Campus

Ikpe Joseph Daniel<sup>1</sup> Department of Electrical/Electronic and Computer Engineering, University of Uyo, Akwa Ibom, Nigeria Ozuomba Simeon<sup>2</sup> Department of Electrical/Electronic and Computer Engineering, University of Uyo, Akwa Ibom, Nigeria <u>simeonoz@yahoomail.com</u> simeonozuomba@uniuyo.edu.ng Udofia Kufre<sup>3</sup> Department of Electrical/Electronic and Computer Engineering, University of Uyo, Akwa Ibom, Nigeria

Abstract— In this paper, a study was carried out to analyse the Google map-based rooftop solar energy potential for University of Uyo main campus. First, the dimension of the individual rooftop and then the total rooftop areas in the University of Uyo main campus were obtained using Google Map imagery and ArcGIS tools. The PVSyst simulation software was used for the rooftop solar energy potential analysis. Particularly, the PVSyst software was used for the determination of the PV energy generation potential of the rooftop PV with its other techno-economic system along performance parameters. The meteorological data used for the simulation was obtained from NASA Website. The simulation was conducted for fully insulated PV arrays (close roof mounted) PV modules. The results shows that the system annual energy production was 7712 MWh/year with specific production of 1184 kWh/kWp/year, performance ratio of 68.4 %, total annual thermal loss of 1,649,831 kWh per year and unit energy cost of 82 Naira per kWh. Also, the results show that the thermal loss was the major loss component in the PV solar power system. Also, the operating PV efficiency of the PV module was 9.94 % which is much lower than the PV module efficiency of 13.45 % specified by the manufacturer.

Keywords—Rooftop Solar Energy, Arcgis , Google Map, Solar Energy Potential, PV Modules, Fully Insulated PV Arrays, Free Standing PV Arrays

# I. INTRODUCTION

Over the years, the need to tackle the problem of global warming has prompted growing quest for adoption of renewable energy power technologies [1,2,3,4,5,6]. Among the numerous options, photovoltaic (PV) solar power system is the most widely adopted renewable option

[7,8,9]. However, the installation of PV panels occupies much spaces and this becomes a problem in the city where there is space constraint [10,11,12]. In view of this, the installation of PV panels on rooftops has become the option for spaced constrained PV project sites.

Accordingly, studies have shown that the energy potential of any given rooftop is determined by the available rooftop area, the tilt angle of the roof, the solar radiation, the ambient temperature, and other factors [13,14,15]. Importantly, in order to estimate the rooftop solar potential of large area, remote sensing technologies and Google maps can be used to capture requisite images of the area and then estimate the available rooftop areas from the images [16,17,18,19]. In this paper, Google map and ArcGIS software tools are used to estimate the rooftop areas of the buildings in the main campus of University of Uyo [20,21,22,23,24]. The rooftop areas are then summed up and used to estimate the rooftop potential of the rooftops in the University campus. Specifically, PVSyst software [25,26] was used to conduct the technical and economic analysis based on the estimated rooftop area. Also, some other parameters were also determined to assess the performance of the PV system.

# II. METHODOLOGY

### A. Description of the Case Study Site

The case study site is University of Uyo Main Campus located along Nwaniba Road. The enhanced Google Earth image of the case study site was acquired with the assistance of experts from the Advanced Space Technology Application Laboratory (ASTAL) Uyo. Particularly, the Area of Interest (AOI) was zoomed and allowed to settle in the Google Earth Application showing Uyo, Akwa Ibom State as at 11<sup>th</sup> January, 2019. The coordinate of the AOI, in this case the University of Uyo Main Campus were captured and the georeferenced image of the study area in is shown in Figure 1.





Determination of the Building Rooftop Area В. using Google Maps and ArcGIS Tools

The building rooftop areas were obtained from the Enhanced Google Earth (EGE) image of AOI using ArcGIS. The image of the AOI was imported into the ArcGIS, georeferenced and the required features (rooftop area and road layout) were digitized out of the georeferenced image of the AOI. The features of interest such as buildings and roads were digitized out as showing in Figure 2.



Figure 2: Map of University of Uyo showing the Solar Potential Facilities and Road Network

The digitized features thereby automatically showed the two dimensional polygon of the building rooftop in metre square ( $m^2$ ). A handheld GPS (Garmin 12) was used to ensure positional accuracy of the buildings within the campus and the names assigned to them. Before the enhanced EGE image can be georeferenced, it needs to project the coordinate system from three-dimensional (3D) coordinate system to a two-dimensional (2D) coordinate system. The type of projected coordinate adopted in this study is the Universal Transverse Mercator (UTM), a system that assigned coordinate to location on the surface of the earth. Essentially, the UTM projected coordinate system was used during the georeferencing. The area of the building rooftops were automatically computed using the tools in ArcGIS. The complete list of the computed rooftop areas are given in Table 1. From Table 1, the total rooftop area of the building in the case study site is 57007.9481m<sup>2</sup>.

| Table  | 1: Detailed | Georeferencing | of Area. | Latitude and I | Longitude ( | Coordinate | Value |
|--------|-------------|----------------|----------|----------------|-------------|------------|-------|
| I uore | 1. Dottanou | Georgienenic   | or mou.  | Lunuac una     |             | coorannaic | , and |
|        |             | 0              |          |                | 0           |            |       |

| 1  | Admin Building                  | 1259.56956  | 5.038000107 | 7.977000237 |
|----|---------------------------------|-------------|-------------|-------------|
| 2  | Admin Building 1                | 226.9123094 | 5.039000034 | 7.977000237 |
| 3  | ELF Thearter                    | 785.7769614 | 5.039999962 | 7.981999874 |
| 4  | Untitled Polygon                | 898.4765999 | 5.039000034 | 7.975999832 |
| 5  | TetFund Building                | 4649.654217 | 5.040999889 | 7.975999832 |
| 6  | Agric Lab                       | 2002.803299 | 5.041999817 | 7.975999832 |
| 7  | Computer Lab                    | 1954.242217 | 5.041999817 | 7.974999905 |
| 8  | ICT Building                    | 713.292197  | 5.040999889 | 7.974999905 |
| 9  | Workshop                        | 416.8818734 | 5.040999889 | 7.973999977 |
| 10 | Engr 1                          | 797.8771038 | 5.041999817 | 7.974999905 |
| 11 | Engr2                           | 257.2010513 | 5.041999817 | 7.973999977 |
| 12 | Engr 3                          | 379.5915111 | 5.041999817 | 7.974999905 |
| 13 | Engr 4                          | 519.5493734 | 5.041999817 | 7.974999905 |
| 14 | Engr 5                          | 264.0372781 | 5.041999817 | 7.974999905 |
| 15 | New Building                    | 755.4098498 | 5.043000221 | 7.974999905 |
| 16 | Workshop 2                      | 439.1231524 | 5.043000221 | 7.974999905 |
| 17 | University Canteen              | 349.5920371 | 5.043000221 | 7.974999905 |
| 18 | Workshop 3                      | 154.6513702 | 5.043000221 | 7.974999905 |
| 19 | Workshop 4                      | 143.1738482 | 5.043000221 | 7.975999832 |
| 20 | Faculty of Engineering Lavatory | 186.6616064 | 5.043000221 | 7.975999832 |
| 21 | Female Hostel                   | 1491.653765 | 5.041999817 | 7.97300005  |
| 22 | Eka Sami Canteen                | 185.2252536 | 5.043000221 | 7.97300005  |
| 23 | Male Hostel                     | 1580.48013  | 5.043000221 | 7.973999977 |
| 24 | Unknown 1                       | 284.6137183 | 5.044000149 | 7.97300005  |
| 25 | Unknown 2                       | 437.5177658 | 5.044000149 | 7.97300005  |
| 29 | Physical Planning               | 2541.373154 | 5.044000149 | 7.974999905 |
| 30 | Lecture Thearter                | 859.9557874 | 5.039999962 | 7.97300005  |
| 31 | Untitled Polygon                | 1442.037467 | 5.045000076 | 7.978000164 |
| 33 | Untitled Polygon                | 1074.904883 | 5.046000004 | 7.978000164 |
| 34 | Untitled Polygon                | 1062.226448 | 5.046000004 | 7.978000164 |
| 35 | Untitled Polygon                | 993.1153179 | 5.043000221 | 7.977000237 |
| 36 | Untitled Polygon                | 2051.624871 | 5.043000221 | 7.978000164 |
| 37 | Untitled Polygon                | 1343.572157 | 5.041999817 | 7.979000092 |
| 41 | Untitled Polygon                | 5502.439819 | 5.043000221 | 7.980999947 |
| 42 | Untitled Polygon                | 484.4381865 | 5.039000034 | 7.977000237 |
| 43 | Untitled Polygon                | 1063.507853 | 5.039000034 | 7.978000164 |
| 44 | Untitled Polygon                | 153.7931379 | 5.039999962 | 7.978000164 |
| 45 | Untitled Polygon                | 925.9726127 | 5.039000034 | 7.979000092 |
| 46 | Untitled Polygon                | 2494.198424 | 5.039999962 | 7.977000237 |
| 49 | Untitled Polygon                | 220.3220504 | 5.040999889 | 7.978000164 |
| 50 | Untitled Polygon                | 4101.672108 | 5.039999962 | 7.979000092 |
| 55 | PG School                       | 3133.163802 | 5.035999775 | 7.974999905 |
| 56 | Untitled Polygon                | 181.5561792 | 5.034999847 | 7.974999905 |
| 57 | Health Center                   | 548.4142087 | 5.035999775 | 7.974999905 |

| 58 | Untitled Polygon                   | 472.584911  | 5.039000034 | 7.980000019 |
|----|------------------------------------|-------------|-------------|-------------|
| 59 | Untitled Polygon                   | 267.2910473 | 5.038000107 | 7.980000019 |
| 60 | Untitled Polygon                   | 277.548069  | 5.039000034 | 7.980000019 |
| 61 | Science Faculty's Business Centers | 948.671327  | 5.039000034 | 7.980000019 |
| 79 | Untitled Polygon                   | 173.0923034 | 5.034999847 | 7.978000164 |
| 80 | Untitled Polygon                   | 145.5831036 | 5.034999847 | 7.978000164 |
| 81 | Untitled Polygon                   | 553.4521102 | 5.032999992 | 7.980999947 |
| 82 | Untitled Polygon                   | 708.1577112 | 5.035999775 | 7.980999947 |
| 83 | Untitled Polygon                   | 38.8983095  | 5.035999775 | 7.980999947 |
| 84 | Unknown                            | 128.6470295 | 5.037000179 | 7.980999947 |
| 85 | Unknown                            | 108.8524521 | 5.037000179 | 7.980000019 |
| 86 | Untitled Polygon                   | 82.31936956 | 5.037000179 | 7.980000019 |
| 87 | Concrustion Site                   | 1602.689444 | 5.041999817 | 7.978000164 |
| 88 | Untitled Polygon                   | 187.9043917 | 5.027999878 | 7.979000092 |
|    | Total                              | 57007.9481  | 5.040258621 | 7.976982774 |

#### C. Analytical Determination of the Effective Rooftop Area that can be used for PV Panel Installation in the case study site

Let the total actual area of the roof be denoted as  $A_{RFA}$  and the total effective area of the roof for PV panel installations be denoted as  $A_{PVT}$ , then;

$$A_{PVT} = (f_o)(f_s)(A_{TRF})$$
(1)  
Where,

 $f_{o} = (f_{flat})(r_{flat}) + (f_{peak})(r_{peak})$ (2)

 $f_o$  = Overall reduction factor for roof inclination with respect to optimal tilt angle

 $f_{flat}$  = Fraction of roof area that is flat roof

 $f_{peak} = Fraction of roof area that is peaked$ 

- $r_{flat}$  = Reduction factor for roof area that is flat roof (usually,  $r_{flat}$  = 1)
- $r_{peak}$  = Reduction factor for roof area that is flat peaked (usually,  $r_{peak}$  = 0.5)
- $f_s$  = Reduction factor to account for roof area that has shading and others portion of the roof area that are used for other purposed and for panel servicing and installation (typical range of values are, 0.3  $\leq$  $f_s \leq 0.9$ )

In this work, the reduction factors used for the calculations are:  $f_{flat}$ = 1;  $f_{peak}$  = 0,  $r_{flat}$  =0.95; $r_{peak}$  = 1 and  $f_s$  = 0.9.

Based on the given roof dimensions and roof area reduction factors,

$$f_{o} = (f_{flat})(r_{flat}) + (f_{peak})(r_{peak}) = (1)(0.95) + (0)(0.5) = 0.95$$

$$A_{PVT} = (f_o)(f_s)(A_{TRF}) = (0.95)(0.9)(A_{TRF})$$
$$A_{PVT} = (0.855)(57007.85) = 48741.71m^2 \approx 48742 m^2$$

Therefore, the effective roof area (A<sub>PVT</sub> ) for PV installation is  $A_{PVT} \approx 48742 m^2$ 

# D. Use of PVSyst and the Geo-coordinates of the Case Study Site

The geo-coordinates of the case study site (at University of Uyo main campus also known as UNIUYO Main Campus) is given as latitude: 5.03, longitude: 7.98 and altitude: 49. The PVSyst meteorological data dialogue box was uses for downloading 22-years monthly average values of the solar radiation on the horizontal plane along with the 22-years monthly average values of ambient temperature of the site.

# E. Determination the Optimal Tilt Angle for PV Panel Installation in the Case Study Site

The optimal tilt angle,  $\beta_{opt}$  for the PV module is computed as;

$$\beta_{opt} = 3.7 + 0.69 |\varphi|$$
 (3)

Where  $\varphi$  is the latitude of the site with latitude of 5.03, then  $\beta_{opt} = 3.7 + 0.69 |5.03| = 7.1707 \approx 8$ .

F. Selection of the Appropriate PVSyst Thermal Loss Factor Setting for the Rooftop PV Panel Installation

PVsyst software uses the thermal loss factor model given by Kaldellis et al., (2014) as;

$$U(T_{cell} - T_a) = \alpha(G) (l - \eta_{PVSTC})$$
(4)

$$U = \left(\frac{\alpha(G)\left(1 - n_{PVSTC}\right)}{T_{cell} - T_a}\right)$$
(5)

Where U is the thermal loss factor;  $\alpha$  is the absorption coefficient of solar irradiation. The default value for the absorption coefficient ( $\alpha$ ) is 0.9;  $T_{cell}$  and  $T_a$  are the module and the ambient temperatures (in °C) respectively; G is the irradiance incident on the plane of the module or array (W/m<sup>2</sup>) and  $\eta_{PVSTC}$  is the module efficiency at standard test condition (STC).

Based on the thermal loss factor model, PVsyst determines the cell temperature based on the Faiman module temperature model given by Copper et al., (2013) as;

$$T_{cell} = T_a + \left(\frac{\alpha(G)(1 - \eta_{PVSTC})}{U_0 + U_1(V_{wind})}\right)$$

(6)

PVsyst published thermal loss factor settings for  $U_0$  and  $U_1$  for fully insulated arrays (close roof mount) is Uo =15, U1= 0 PVsyst (2012). Accordingly, in this paper, the thermal loss factor setting of Uo =15, U1= 0 was adopted.

#### G. Sizing of the PV Power System Components in PVSyst

For grid connected solar power systems, the PVSyst-based system sizing can be done based on two criteria, namely; the load demand or the available area for the PV modules. Specifically, for any given daily load demand ( $E_L$ ) in Kwh/day with de-rating factors  $f_{dc/ac}$  and  $f_{temp}$ , the PV size in terms of area ( $A_{PVT}$ ) required to meet the daily load demand is given as;

$$A_{PVT} = \frac{E_L}{(G_d * \eta_{pv} * f_{dc/ac} * f_{temp})}$$

Conversely, for any given PV size in terms of area,  $A_{PVT}$ , the daily load demand ( $E_L$ ) the PV can satisfy is given as;

(7)

(9)

 $E_L = A_{pv} (G_d * \eta_{pv} * f_{dc/ac} * f_{temp})$  (8) Where: A<sub>PVT</sub> is the PV area in  $m^2$ ;  $E_L$  is the daily load demandin Kwh/day;  $G_d$  is the average daily solar global irradiation based on the global air-mass 1.5 spectrum of 1000 w/m<sup>2</sup>.  $G_d$  is also called the Peak Sun Hour (PSH);  $\eta_{pv}$  is the module efficiency;  $f_{dc/ac}$  is the DC to AC derating factor (%);  $f_{temp}$  is the temperature de-rating factor. The temperature de-rating factor,  $f_{temp}$  is given as:

$$f_{temp} = 1 - (\gamma_{pv} * (T_c - T_{STC}))$$

Where:  $f_{temp}$  is the temperature de-rating factor, dimensionless;  $\gamma_{pv}$  is the temperature coefficient of power, that is, the absolute value of power temperature coefficient per degree Celsius ;  $T_c$  is the average daily cell temperature;  $T_{STC}$  is the cell temperature at Standard Test Conditions, in degrees Celsius. Let  $f_{dc/ac}$  be the overall DC to AC de-rate factor, the  $f_{dc/ac}$  is calculated by multiplying the component de-rate factors as follows;

$$f_{dc/ac} = f_{pvtol} * f_{mism} * f_{diode} * f_{dcwiring} * f_{pacwiring} * f_{soiling} * f_{sysavail} * f_{shading} * f_{suntrack} * f_{aging} (10)$$

Where the various derate factors are:  $f_{pvtol}$  is the derating factor due to PV module nameplate tolerance DC rating;  $f_{inv}$  is the de-rating factor due to Inverter and Transformer;  $f_{mism}$  is the de-rating factor due to Mismatch

 $f_{diode}$  is the de-rating factor due to Diodes and connections;  $f_{dcwiring}$  is the de-rating factor due to DC wiring;  $f_{pacwiring}$  is the de-rating factor due to AC wiring;  $f_{soiling}$  is the de-rating factor due to AC soiling;  $f_{sysavail}$  is the de-rating factor due to System availability;  $f_{shading}$  is the de-rating factor due to Shading;  $f_{suntrack}$  is the de-rating factor due to Sun – tracking;  $f_{aging}$  is the de-rating factor due to AC solution of each derate factor is greater than zero but less or equal to 1. Consequently,  $0 < f_{dc/ac} \le 1$ .

# III. RESULTS AND DISCUSSION

Based on the latitude of 5.03° for the case study site, the optimal tilt angle was computed as  $\beta_{opt} = 3.7 + 0.69|5.03| = 7.1707° \approx 8°$ . The monthly average of global solar radiation on the horizontal plane and the monthly average of global solar radiation on the tilted plane are given in Figure 3.

The simulations in PVSyst Software was carried out for the technical and economic analysis of the rooftop PV energy potential of the case study site using thermal loss factor settings for fully insulated arrays (close roof mount) PV modules with Uo =15, U1= 0 (PVsyst, 2012). The screenshot of the PVSyst software system sizing dialogue box setting of the PV power system for the fully insulated arrays (close roof mount) PV modules is shown in Figure 4. The results show that a total of 26048 PV modules with a total area of 48729  $m^2$  are required. The screenshot of the PVSyst software economic analysis input dialogue box setting of the PV power system is shown in Figure 5.



Figure 3: The bar chart of the global solar radiation on the horizontal plane and the global solar radiation on the tilted plane

| Grid system definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , Variant "New simulation variant" – 🗖 🕨                                                                                                                                                                                |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Global System configuration         1       1         Number of kinds of sub-fields         ?       Simplified Schema                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>Global system summary</b><br>Nb. of modules 26048 Nominal PV Power 6512 kWp<br>Module area 48729 m² Maximum PV Power 6573 kWdi<br>Nb. of inverters 136 Nominal AC Power 5059 kWai                                    |  |  |  |  |
| Homogeneous System Presizing Help O No Sizing Enter planned power O 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i13.8 kWp, or available area 💿 48742 m² 🤶                                                                                                                                                                               |  |  |  |  |
| Select the PV module<br>Sort modules © Power — © Technology<br>250 Wp 15V Si-poly alfasolar 250 P<br>Maximum nb. of modules <b>26055</b> Sizing voltages :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O Manufacturer All modules     AlfaSolar Photon Maq. 200                                                                                                                                                                |  |  |  |  |
| Select the inverter         Sort inverters by:          Power          37 kW       125 - 480 V       50/60 Hz         G-537       Leonics         Image: Sort inverters       Image: Sort inverters         Image: Sort inverters       Image: |                                                                                                                                                                                                                         |  |  |  |  |
| Design the array         Number of modules and strings         Number of modules and strings       should be         Mod. in series       16       image: between 9 and 24         Nbre strings       1628       image: between 1265 and 1628         Overload loss       0.2 %       Show sizing       ?         Pnom ratio       1.29       Show sizing       ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Operating conditions<br>Vmpp (60°C) 245 V<br>Vmpp (20°C) 293 V<br>Voc (-10°C) 393 V<br>Plane irradiance 1000 W/m² O Max. in data<br>Impp (STC) 22848 A Max. operating power<br>Isc (STC) 25055 A at 1000 W/m² and 50°C) |  |  |  |  |
| Nb. modules 26048 Area 48729 m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ise (at STC) 24746 A Array nom. Power (STC) 6512 kWp                                                                                                                                                                    |  |  |  |  |
| 🐔 User's needs 🛛 Detailed losses 📭                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 🗲 🔀 Cancel 🗸 OK                                                                                                                                                                                                         |  |  |  |  |

Figure 4: The screenshot of the PVSyst software system sizing dialogue box setting of the PV power system for the fully insulated arrays (close roof mount) PV modules

| 3                                                                                                                                                             | Economic evaluation                                                                                                                                                                                                                                                          | - 🗆 🗙                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project and Simulation variant<br>Project: UNIUYO_ROOFTOP_SC<br>Simulation New simulation variant<br>PV Array, Pnom = 6512 kWp<br>PV module : alfasolar 250 P | DLAR_POTENTIAL<br>System: Grid-Connected System<br>Inverter : G-537                                                                                                                                                                                                          | Values<br>O Global                                                                                                                                         |
| PV modules 26048 units of 250 Wp<br>Supports / Integration<br>Inverters 136 units of 37.2 kW                                                                  | 450.00 Naira / W<br>300.00 Naira / W<br>300.00 Naira / W                                                                                                                                                                                                                     |                                                                                                                                                            |
| Settings, wiring,<br>Others, miscellaneous<br>Substitution underworth                                                                                         | 45.00 Naira / Wp<br>45.00 Naira / Wp<br>0.00 Naira / Wp                                                                                                                                                                                                                      |                                                                                                                                                            |
| Financing       Taxes       20.00       %                                                                                                                     | 228.00     Naira / Wp     Duration       0.00     Naira / Wp     Ann. fa                                                                                                                                                                                                     | 25 Years<br>5.0 %<br>actor 7.10 %cap./yr                                                                                                                   |
| Net investment<br>Annuities<br>Running Costs, Maintenance, insur.                                                                                             | 1368.00         Naira / Wp         Energy           97.06         Naira / Wp         Produce           0.00         Naira / Wp         Yearly compared           97.06         Naira / Wp         Yearly compared           97.06         Naira / Wp         Yearly compared | cost           d Energy         7712         MWh / year           ost         2074006         Naira / year           cost         82.0         Naira / kWh |
|                                                                                                                                                               | 🍬 Financial Balance 🛛 🗎 P                                                                                                                                                                                                                                                    | rint 🛛 🗶 Cancel 💽 🗸 OK                                                                                                                                     |

Figure 5: The screenshot of the PVSyst software economic analysis input dialogue box setting of the PV power system for the fully insulated arrays (close roof mount) PV modules

According to the results, the selected PV is the 250 Wp Si-poly manufactured by AlfaSolar. The total number of PV modules required is 26048 with 16 modules in series and 1628 strings in parallel. The results in Figure 6 and Figure 7 show that the system annual energy production is 7712MWh/year with specific production of 1184 kWh/kWp/year and performance ratio of 68.4 %. According to the results in Figure 5, the unit cost of energy

for the fully insulated arrays (close roof mount) PV modules is 82 Naira per kWh.

The system loss diagram for the fully insulated arrays (close roof mount) PV modules is given in Figure 8. Among other losses, the thermal loss due to module cell temperature is about 15.6 % of the total energy. When the various losses in the system are considered, the energy at the inverter output is 7711651 kWh per annum which is approximately 7712 MWh per annum.

| 2                                                         |                                 | Results, va                             | ariant VC8 "N                                     | ew simulation va                                                     | ariant"                                                             |                                              | x          |
|-----------------------------------------------------------|---------------------------------|-----------------------------------------|---------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------|------------|
| Simulation<br>Project                                     | Daramete                        | ROOFTOP_SOLAR_F                         | System                                            |                                                                      |                                                                     |                                              |            |
| Site<br>System type                                       | UNIUYO_<br>Grid-Conn            | MAIN_CAMPUS<br>ected                    | PV modules<br>Nominal Power                       | alfasolar 250 P<br>6512 kWp                                          | Inverter<br>Inv. unit power                                         | G-537<br>37.2 kW                             |            |
| Simulation                                                | 01/01 to<br>(Generic m          | 31/12<br>neteo data)                    | MPP Voltage<br>MPP Current                        | 0 V<br>0.0 A                                                         | Nb. of inv.                                                         | 136                                          |            |
| Main resul<br>System Prod<br>Specific prod<br>Performance | Its<br>Juction<br>d.<br>e Ratio | 7712 MWh/yr<br>1184 kWh/kWp/yr<br>0.684 | Normalized prod.<br>Array losses<br>System losses | <b>3.24</b> kWh/kWp/<br><b>1.21</b> kWh/kWp/<br><b>0.28</b> kWh/kWp/ | /day Investmer <b>890</b><br>/day Spec. invest.<br>/day Energy cost | 18416000 Naira<br>1368 Naira/<br>82.0 Naira/ | Wp<br>'kWh |

Figure 6: The simulation parameters along with the summary of the main results output window for the fully insulated arrays (close roof mount) PV modules

| UNIVERSITÉ<br>DE GENÈVE<br>PVSYST                                                                             | V5.06                                                                                                  |                                                                                    |                                                     | 21/07/19                                           | Page 2/4       |  |  |  |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|----------------|--|--|--|
|                                                                                                               | Grid-Connected S                                                                                       | ystem: Main re                                                                     | sults                                               |                                                    |                |  |  |  |
| Project : UNIUYO_ROOFTOP_SOLAR_POTENTIAL                                                                      |                                                                                                        |                                                                                    |                                                     |                                                    |                |  |  |  |
| Simulation variant :                                                                                          | New simulation variant                                                                                 |                                                                                    |                                                     |                                                    |                |  |  |  |
| Main system paramet<br>PV Field Orientation<br>PV modules<br>PV Array<br>Inverter<br>Inverter<br>User's needs | ers System type<br>tilt<br>Model<br>Nb. of modules<br>Model<br>Nb. of units<br>Unlimited load (grid)   | <b>Grid-Connected</b><br>8°<br>alfasolar 250 P<br>26048<br>G-537<br>136.0          | azimuth<br>Pnom<br>Pnom total<br>Pnom<br>Pnom total | 0°<br>250 Wp<br>6512 kWp<br>37 kW ac<br>5059 kW ac | :              |  |  |  |
| Main simulation resul<br>System Production<br>Investment<br>Yearly cost<br>Energy cost                        | ts<br>Produced Energy<br>Performance Ratio PR<br>Global incl. taxes<br>Annuities (Loan 5.0%, 25 years) | 7712 MWh/year<br>68.4 %<br>8908416000 Naira<br>632074006 Naira/y<br>82.0 Naira/kWh | Specific prod.<br>Specific<br>Running Costs         | 1184 kWh/ł<br>1368 Naira/<br>0 Naira/yr            | kWp/year<br>Wp |  |  |  |

Figure 7: The simulation main results and the summary of economic analysis output window for the fully insulated arrays (close roof mount) PV modules



Figure 8:

The system loss diagram for the fully insulated arrays (close roof mount) PV modules

The operating efficiency of the PV is computed from Figure 9 as follows:

$$\eta_{pv} = \left\{ \frac{(14550 \, Kwh/day)}{(3Kwh/m^2/day)(48742m^2)} \right\} x \ 100\% = 9.95 \%$$
(11)

From the daily energy output diagram of Figure 9, the operating efficiency of the PV under its operating conditions is computed to be 9.95 % as against 13.45 % module efficiency at Standard Test Condition (STC) as shown in Figure 10. The computed operating module efficiency of 9.95 % corresponds to the yearly average array efficiency of 9.94 % as shown in Table 2 with yearly average EffArrR = 9.94 %.

Among other parameters, the results in Table 2 show the values of the thermal loss (TempLss), PV array temperature (Tarray) and the global solar radiation on the PV inclined plane (GlobInc) while the results in Table 3 show the correlation among thermal loss (TempLss), PV array temperature (Tarray) and the global solar radiation on the PV inclined plane (GlobInc). According to the results, the thermal loss (TempLss) has higher correlation value with PV array temperature (Tarray) than it has with the global solar radiation on the PV inclined plane (GlobInc). Essentially, the array temperature has more influence on the thermal loss of a PV array than the solar radiation. According to the results in Table 4, the total annual thermal loss (TempLss) is 1,649,831 kWh.





The daily energy output diagram for the fully insulated arrays (close roof mount) PV modules

| Definition of a PV module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 🗆 🗙                                                                                                                   |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Basic data Model parameters Sizes and Technology Commercial Graphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                         |  |  |  |  |  |  |
| Model       alfasolar 250 P       Manufacturer       AlfaSolar         File name       alfasolar_250_P.PAN       Data source       Photon Mag. 2003         Nom. Power<br>(at STC)       250.       Wp Tol.       5.0       % Technology       Si-poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ?                                                                                                                       |  |  |  |  |  |  |
| Manufacturer specifications or       other Measurements       ??         Reference conditions:       GRef       1000       W/m²       TRef       25 °C         Short-circuit current       Isc       15.20       A       Open circuit Voc       22.00       V         Max Power Point:       Impp       14.37       A       Vmpp       17.40       V         Temperature coefficient       mulsc       7.6       mA/°C       36 x 3       36 x 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Model summary<br>Main parameter<br>R shunt 100 ohm<br>R serie 0.05 ohm<br>Gamma 1.35<br>IoRef 332 nA<br>muVoc -73 mV/*C |  |  |  |  |  |  |
| Internal model result tool       Operating conditions       GOper       1000 •       W/m²       TOper       25 • *C       *C         Max Power Point:       Pmpp       251.6 W       Temper. coeff.       -0.42 %/*C       -0.42 %/*C         Current Impp       14.03 A       Voltage Vmpp       17.9 V       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - </td <td>Secondary parameter<br/>Rsh(G=0) 400 ohm</td> | Secondary parameter<br>Rsh(G=0) 400 ohm                                                                                 |  |  |  |  |  |  |
| Copy to table Print X Cance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ы 🗸 ОК                                                                                                                  |  |  |  |  |  |  |

Figure 10: The efficiency of the PV modules at standard test condition (STC)

| Balances and main results |         |       |         |         |         |         |         |         |  |
|---------------------------|---------|-------|---------|---------|---------|---------|---------|---------|--|
|                           | GlobHor | T Amb | Globinc | GlobEff | EArray  | E_Grid  | EffArrR | EffSysR |  |
|                           | kWh/m²  | °C    | kWh/m²  | kWh/m²  | kWh     | kWh     | %       | %       |  |
| January                   | 171.4   | 25.40 | 181.0   | 175.7   | 864180  | 797660  | 9.80    | 9.04    |  |
| February                  | 156.5   | 25.80 | 161.8   | 157.0   | 763000  | 702946  | 9.68    | 8.92    |  |
| March                     | 164.9   | 25.70 | 165.6   | 160.6   | 797885  | 735191  | 9.89    | 9.11    |  |
| April                     | 152.7   | 25.80 | 150.0   | 145.3   | 727661  | 670369  | 9.95    | 9.17    |  |
| Мау                       | 146.3   | 25.60 | 140.5   | 135.6   | 683712  | 627831  | 9.98    | 9.17    |  |
| June                      | 129.3   | 24.80 | 124.4   | 119.7   | 616090  | 566043  | 10.16   | 9.33    |  |
| July                      | 119.4   | 24.10 | 115.6   | 111.1   | 574625  | 526408  | 10.20   | 9.34    |  |
| August                    | 116.9   | 23.90 | 114.3   | 110.0   | 563173  | 515122  | 10.12   | 9.25    |  |
| September                 | 118.2   | 24.10 | 117.5   | 113.6   | 574343  | 525128  | 10.03   | 9.17    |  |
| October                   | 132.4   | 24.40 | 134.5   | 130.0   | 657010  | 602037  | 10.03   | 9.19    |  |
| November                  | 145.2   | 24.70 | 151.8   | 147.0   | 728771  | 669595  | 9.85    | 9.05    |  |
| December                  | 164.0   | 24.70 | 174.1   | 168.8   | 837978  | 773321  | 9.88    | 9.12    |  |
| Year                      | 1717.1  | 24.91 | 1731.2  | 1674.5  | 8388426 | 7711651 | 9.94    | 9.14    |  |

Table 2: The balances and main results table for the case of fully insulated arrays (close roof mount) PV modules

 Table 3: The correlation among Thermal loss (TempLss), PV array temperature (Tarray) and the global solar radiation on the PV inclined plane (GlobInc)

|         | TempLss | Tarray | GlobInc |
|---------|---------|--------|---------|
| TempLss | 1       |        |         |
| Tarray  | 0.985   | 1      |         |
| GlobInc | 0.978   | 0.972  | 1       |

 Table 4: Thermal loss (TempLss), PV array temperature (Tarray) an the global solar radiation on the PV inclined plane (GlobInc)

|           | TempLss | TArray | Globinc | E User  | EArray  | EffArrR | EffSysR |
|-----------|---------|--------|---------|---------|---------|---------|---------|
|           | kWh     | °C     | kWh/m²  | kWh     | kWh     | %       | %       |
| January   | 200669  | 56.39  | 181.0   | 797660  | 864180  | 9.80    | 9.04    |
| February  | 188350  | 55.83  | 161.8   | 702946  | 763000  | 9.68    | 8.92    |
| March     | 169628  | 52.21  | 165.6   | 735191  | 797885  | 9.89    | 9.11    |
| April     | 145068  | 50.88  | 150.0   | 670369  | 727661  | 9.95    | 9.17    |
| May       | 126670  | 47.05  | 140.5   | 627831  | 683712  | 9.98    | 9.17    |
| June      | 91651   | 44.52  | 124.4   | 566043  | 616090  | 10.16   | 9.33    |
| July      | 78996   | 42.11  | 115.6   | 526408  | 574625  | 10.20   | 9.34    |
| August    | 87546   | 42.18  | 114.3   | 515122  | 563173  | 10.12   | 9.25    |
| September | 101460  | 43.52  | 117.5   | 525128  | 574343  | 10.03   | 9.17    |
| October   | 119663  | 45.12  | 134.5   | 602037  | 657010  | 10.03   | 9.19    |
| November  | 156866  | 49.84  | 151.8   | 669595  | 728771  | 9.85    | 9.05    |
| December  | 183264  | 54.68  | 174.1   | 773321  | 837978  | 9.88    | 9.12    |
| Year      | 1649831 | 48.61  | 1731.2  | 7711651 | 8388426 | 9.94    | 9.14    |

### V. CONCLUSION

The solar potential of the rooftop of the buildings in the main campus of University of Uyo is presented. The Google Earth was used to acquire enhanced image of the case study site. The building rooftop areas were obtained from the Enhanced Google Earth (EGE) image of Area of Interest (AOI) using ArcGIS. Based on the building rooftop area, PVSyst software was used to determine the solar energy potential of the rooftops and the unit cost of the energy from the building rooftops in the case study site. The analysis was done for fully insulated PV arrays (close roof mount PV) and the results show that the thermal loss was the major loss component in the PV solar power system. Also, the operating PV efficiency is much lower than the PV module efficiency specified by the manufacturer.

#### REFERENCES

- 1. Lin, Boqiang, and Junpeng Zhu. "Determinants of renewable energy technological innovation in China under CO2 emissions constraint." *Journal of environmental management* 247 (2019): 662-671.
- 2. Olah, George A., et al. "Difference and significance of regenerative versus renewable carbon fuels and products." *Topics in Catalysis* 61.7-8 (2018): 522-529.
- 3. Cherp, Aleh, et al. "Integrating technoeconomic, socio-technical and political perspectives on national energy transitions: A meta-theoretical framework." *Energy Research & Social Science* 37 (2018): 175-190.
- Burke, Matthew J., and Jennie C. Stephens. "Political power and renewable energy futures: A critical review." *Energy research & social science* 35 (2018): 78-93.
- Elum, ZA and, and A. S. Momodu. "Climate change mitigation and renewable energy for sustainable development in Nigeria: A discourse approach." *Renewable and Sustainable Energy Reviews* 76 (2017): 72-80.
- 6. Merrill, Laura. *Tackling fossil fuel subsidies and climate change: Levelling the energy playing field.* Nordic Council of Ministers, 2015.
- Yushchenko, Alisa, et al. "GIS-based assessment of photovoltaic (PV) and concentrated solar power (CSP) generation potential in West Africa." *Renewable and Sustainable Energy Reviews* 81 (2018): 2088-2103.
- 8. Kemausuor, Francis, Morkporkpor Delight Sedzro, and Isaac Osei. "Decentralised Energy Systems in Africa: Coordination and Integration of Off-Grid and Grid Power Systems—Review of Planning Tools to Identify Renewable Energy Deployment

Options for Rural Electrification in Africa." *Current Sustainable/Renewable Energy Reports* 5.4 (2018): 214-223.

- Moon, Yongma, and Mesut Baran. "Economic analysis of a residential PV system from the timing perspective: A real option model." *Renewable energy* 125 (2018): 783-795.
- 10. Ntsoane, Moroasereme. *Rooftop solar PV potential assessment in the city of Johannesburg*. Diss. Stellenbosch: Stellenbosch University, 2017.
- 11. Bridge, Gavin, et al. "Geographies of energy transition: Space, place and the low-carbon economy." *Energy policy* 53 (2013): 331-340.
- 12. Tatari, Mohamed, et al. "The Roof Space Battle: PV vs Skylights and Other Technologies in Net-Zero Energy Capable Facilities." (2014).
- Dioha, Michael O., and Atul Kumar. "Rooftop solar PV for urban residential buildings of Nigeria: A preliminary attempt towards potential estimation." *AIMS ENERGY* 6.5 (2018): 710-734.
- 14. Madessa, Habtamu B. "Performance analysis of roof-mounted photovoltaic systems–The case of a Norwegian residential building." *Energy Procedia* 83 (2015): 474-483.
- 15. Carl, Caroline. *Calculating solar photovoltaic potential on residential rooftops in Kailua Kona, Hawaii.* University of Southern California, 2014.
- 16. Andoni, Merlinda, et al. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities." *Renewable and Sustainable Energy Reviews* 100 (2019): 143-174.
- Choi, Yosoon, Jangwon Suh, and Sung-Min Kim. "GIS-Based Solar Radiation Mapping, Site Evaluation, and Potential Assessment: A Review." *Applied Sciences* 9.9 (2019): 1960.
- 18. Effat, Hala Adel. "Mapping Solar Energy Potential Zones, using SRTM and Spatial Analysis, Application in Lake Nasser Region, Egypt." *International Journal of Sustainable Land Use and Urban Planning* 3.1 (2016).
- 19. Palmer, Diane, et al. "Assessment of potential for photovoltaic roof installations by extraction of roof tilt from light detection and ranging data and aggregation to census geography." *IET Renewable Power Generation* 10.4 (2016): 467-473.
- Aboushal, E. A. "Applying GIS Technology for optimum selection of Photovoltaic Panels "Spatially at Defined Urban Area in Alexandria, Egypt"." *Alexandria engineering journal* 57.4 (2018): 4167-4176.
- Melius, J., R. Margolis, and Sean Ong. Estimating rooftop suitability for PV: a review of methods, patents, and validation techniques. No. NREL/TP-6A20-60593.

National Renewable Energy Lab.(NREL), Golden, CO (United States), 2013.

- 22. Chow, Annie, Alan Fung, and Songnian Li. "GIS modeling of solar neighborhood potential at a fine spatiotemporal resolution." *Buildings* 4.2 (2014): 195-206.
- Palmer, Diane, et al. "A GIS-based method for identification of wide area rooftop suitability for minimum size PV systems using LiDAR data and photogrammetry." *Energies* 11.12 (2018): 3506.
- 24. Boz, Mesude Bayrakci, Kirby Calvert, and Jeffrey RS Brownson. "An automated model for rooftop PV systems assessment in ArcGIS using LIDAR." *AIMS Energy* 3.3 (2015): 401-420.
- 25. Kandasamy, C. P., P. Prabu, and K. Niruba. "Solar potential assessment using PVSYST software." 2013 International Conference on Green Computing, Communication and Conservation of Energy (ICGCE). IEEE, 2013.
- Irwan, Y. M., et al. "Stand-alone photovoltaic (SAPV) system assessment using PVSYST software." *Energy Procedia* 79 (2015): 596-603.