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Abstract— This paper presents an approximate 
solution and a finite element model for free 
flexural vibrations of a circular plate with fixed 
edge. The natural frequencies and mode shapes 
of the circular plate can be determined by Modal 
analysis. The Ritz method has been employed as a 
direct numerical method of approximating 
eigenvalue. The study uses ABAQUS (Student 
Edition 2019) software to derive the finite element 
model of the circular plate. The results obtained 
through FEM would be compared with the Ritz 
method for the clamped circular plate.   
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1. Introduction  

In engineering practice, however, many 
components of machines and structures are subjected 
to dynamic effects, produced by time-dependent 
external forces or displacements [1]. 

Moving vehicles, wind gusts, seismic 
disturbances, unbalanced machine vibrations, flight 
loads, sound, etc., may create dynamic loads. 
Dynamic effects of time-dependent loads on 
structures are studied in structural dynamics. 
Structural dynamics deals with time-dependent 
motions of structures, primarily, with vibration of 
structures, and analyses of the internal forces 
associated with them. Thus, its objective is to 
determine the effect of vibrations on the performance 
of the structure or machine [2].   

The dynamics of plates, which are continuous 
elastic systems, can be modeled mathematically by 
partial differential equations based on Newton's laws 
or by integral equations based on the considerations 
of virtual work. In practical applications only the lateral 
vibration is of interest, and the effects of extensional 
vibrations in the middle plane may be neglected. 
Therefore, the inertia forces, associated with the 
lateral translation of the plate, are considered. In this 
paper, only the simplified theory of plate vibrations is 

introduced; some physical phenomena, associated 
with, for instance, damping effects, are not considered 
[2,3].  

Damping effects are caused either by internal 
friction or by the surrounding media. Although 
structural damping is theoretically present in all plate 
vibrations, it has usually little or no effect on (a) the 
natural frequencies and (b) the steady-state 
amplitudes; consequently, it can be safely ignored in 
the initial treatment of the problem [4].   

The derivation of the governing differential 
equation of motion is, in most cases, a simple 
extension of the static case by adding effective forces 
to the plate that result from accelerations of the mass 
of the plate. These are the inertia forces.   

We consider various kinds of motion of plates. 
There is a free vibration, which occurs in the absence 
of applied loads but may be initiated by applying initial 
conditions to the plate. The free vibration deals with 
natural characteristics of the plates, and these natural 
vibrations occur at discrete frequencies, depending 
only on the geometry and material of the plates. Then, 
there is a forced vibration, which results from an 
application of time-dependent loads. Forced vibrations 
come in two kinds: a harmonic response, when a 
periodic force is applied to the plate; and a transient 
response, when the applied force is not a periodic 
force [5]. 

The fundamental natural frequency for 
vibration analysis of many structural systems, 
including plates and shells can be implemented by 
FEM approach. Finite element analysis is a numerical 
method for different types of analyses, including static 
and dynamic analyses. The commercial FEA 
packages such as ABAQUS gives convenient access 
to perform both static and dynamic analyses for 
structural elements.  

Pouladkhan et al. [6] studied a finite element 
model for a simply supported and simply supported-
simply supported-fixed-free rectangular thin plate for 
buckling analysis using ABAQUS software. 
Pouladkhan et al. [7] presented a finite element model 
for a simply supported rectangular thin plate for 
vibration analysis using ABAQUS software. A finite 
element model for a sandwich plate for deflection and 
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stress analysis using ABAQUS software were 
investigated by Pouladkhan et al. [8]. Pouladkhan et 
al. [9] presented an exact solution and a finite element 
method (using ABAQUS) for a smart piezoelectric 
ceramic rod under static load. Pouladkhan [10] 
presented a finite element model using ABAQUS for 
buckling analysis of a circular plate with fixed edge 
and simply supported edge. A finite element model for 
electrostatic analysis of a smart piezoceramic plate by 
using ABAQUS was investigated by Pouladkhan [11]. 

In this study, we will consider a systematic but 
simplified analysis of flexural vibrations of a circular 
plate and obtain some useful relations between the 
fundamental natural frequency of axisymmetric 
vibrations and plate parameters for the Ritz method. 
The results obtained through FEM will be compared 
with the Ritz method for the clamped circular plate. 
 

2. Free flexural vibrations of circular plates         

Let us consider a freely vibrating, solid, 
circular plate of radius a, having a constant thickness 

h. Using the polar coordinates, r and 𝜑, with the origin 
at the center of the plate, we can rewrite the 
governing differential equation of the free vibration of 
plates, Eq. (1), as follows [1]:   

𝐷∇2∇2𝑤(𝑥, 𝑦, 𝑡) + 𝜌ℎ
𝜕2𝑤

𝜕𝑡2
(𝑥, 𝑦, 𝑡) = 0 (1) 

𝐷𝛻𝑟
2𝛻𝑟

2𝑤 + 𝜌ℎ
𝜕2𝑤

𝜕𝑡2
= 0 (2) 

Where 𝛻𝑟
2  is the Laplace operator. Assume that the 

deflection of the middle surface of the plate can be 
approximated as  
 

𝑤(𝑟, 𝜑, 𝑡) = 𝑊(𝑟, 𝜑)𝐹(𝑡) (3) 

Introducing the above into Eq. (2), yields  

𝐷𝐹(𝑡)𝛻𝑟
2𝛻𝑟

2𝑊 + 𝜌ℎ𝑊
𝑑2𝐹

𝑑𝑡2
= 0  𝑜𝑟  

𝐷𝛻𝑟
2𝛻𝑟

2𝑊

𝜌ℎ𝑊

= −

𝑑2𝐹
𝑑𝑡2

𝐹
 

(4) 

Since the left-hand side of this equation is a function 
of variables r and 𝜑  whereas the right-hand side 
depends only on time variable t, we can conclude that 
the ratios in the left- and right-hand sides of Eq. (4) 
must be constant. Denote the aforementioned 

constant ratio on the right-hand side of Eq. (4) by 𝜔2, 
i.e.,  

𝑑2𝐹

𝑑𝑡2
= −𝜔2𝐹 (5) 

Where 𝜔  is the natural frequency of vibrations. 
Solving this for F, yields  

 

𝐹 = 𝐴 sin(𝜔𝑡 + 𝜑0) (6) 

Where φ0 is an arbitrary constant. The shape function 
W(r, φ) satisfies the differential equation 

 

𝐷𝛻𝑟
2𝛻𝑟

2𝑊

𝜌ℎ𝑊
= 𝜔2  𝑜𝑟  𝛻𝑟

2𝛻𝑟
2𝑊 − 𝜆4𝑊 = 0 

(7) 

Where  

𝜆4 =
𝜔2𝜌ℎ

𝐷
 (8) 

Let us go from the variable r to the dimensionless 

variable ζ = λr. Then, Eq. (7) becomes  

(
𝜕2

𝜕𝜁2
+

1

𝜁

𝜕

𝜕𝜁
+

1

𝜁2

𝜕2

𝜕𝜑2
)

2

𝑊 − 𝑊 = 0 
(9) 

Its solution is of the following form [12,13]: 

𝑊(𝑟, 𝜑) = [𝐶1𝐽𝑛(𝜁) + 𝐶2𝐼𝑛(𝜁) + 𝐶3𝑌𝑛(𝜁)
+ 𝐶4𝐾𝑛(𝜁)] sin(𝑛𝜑 + 𝛼) 

(10) 

Where 𝑛 = 0, 1, ⋯ , ∞; 𝐶1, ⋯ , 𝐶4  are constants of 
integration; and Jn(), In(), Yn(), and Kn() are Bessel 
functions of the first and second kind of the real and 
imaginary arguments, respectively [12,13], and 𝛼 is a 
constant. Since the origin of the polar coordinate 
system is taken to coincide with the center of the 
circular plate having no internal holes or supports at 

the center, the terms Yn(ζ)  and Kn(ζ)  must be 
discarded to avoid infinite deflections and stresses at 

r = 0. When these simplifications are employed, Eq. 
(10) becomes, for a typical mode,  
 

𝑊 = [𝐶1𝐽𝑛(𝜁) + 𝐶2𝐼𝑛(𝜁)] sin(𝑛𝜑 + 𝛼) (11) 

Assume that the plate is clamped along its contour. 
The boundary conditions are  

𝑊 =
𝜕𝑊

𝜕𝑟
= 0|𝑟=𝑎 (12) 

When Eq. (11) is substituted into the above boundary 
conditions, the existence of a nontrivial solution yields 
the following characteristic determinant:  

|
𝐽𝑛(𝜁) 𝐼𝑛(𝜁)

𝐽𝑛
′ (𝜁) 𝐼𝑛

′ (𝜁)
| = 0 (13) 

Where the primes are used to indicate a differentiation 

with respect to the argument, in this case to ζ. Using 
the following recursion relationships [12,13]: 
 

𝜁𝐽𝑛
′ (𝜁) = 𝑛𝐽𝑛(𝜁) − 𝜁𝐽𝑛+1(𝜁) 

𝜁𝐼𝑛
′ (𝜁) = 𝑛𝐼𝑛(𝜁) + 𝜁𝐼𝑛+1(𝜁) (14) 

And expanding Eq. (13) gives  

𝐽𝑛(𝜁)𝐼𝑛+1(𝜁) + 𝐼𝑛(𝜁)𝐽𝑛+1(𝜁) = 0 (15) 

The eigenvalues ζ determining the frequencies ω are 
the roots of Eq. (15). The Bessel functions are widely 
tabulated for small values of n [12]. For circular plates 
simply supported all around (w = 0 and Mr = 0), the 
frequency equation is of the form 
 
𝐽𝑛+1(𝜁)

𝐽𝑛(𝜁)
+

𝐼𝑛+1(𝜁)

𝐼𝑛(𝜁)
=

2𝜁

1 − 𝜗
 (16) 

If a plate edge is completely free (Mr = 0 and Vr = 0), 
then the frequency equation can be represented as 

follows (for ζ ≫ n) [14]:  

𝐽𝑛(𝜁)

𝐽𝑛
′ (𝜁)

≅

[𝜁2 + 2(1 − 𝜗)𝑛2] [
𝐼𝑛(𝜁)
𝐼𝑛

′ (𝜁)
] − 2𝜁(1 − 𝜁)

𝜁2 − 2(1 − 𝜗)𝑛2
 (17) 

The natural frequencies and pertinent mode shapes 
for solid circular plates can be also calculated by 
using the Ritz or Galerkin methods. 
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3. Fundamental natural frequency of axisymmetric 
vibrations of a circular plate 
 

Consider a solid circular plate with radius R, 
which is clamped along its boundary. Let us determine 
the fundamental natural frequency of axisymmetric 
vibrations of the plate. We can take the shape function 
in the first approximation as follows: 

  

𝑊 = 𝐶(𝑅2 − 𝑟2)2 (18) 

Evidently, the above expression satisfies the given 

boundary conditions (w = 0 and ∂w ∂r⁄ = 0) exactly. 
We apply the Ritz method. It can be shown that for 
circular plates with a fastened edge the expression for 
the potential energy becomes simplified: 
 

𝑈𝑚𝑎𝑥 = ∬
𝐴

𝐷

2
(
𝜕2𝑊

𝜕𝑟2
+

1

𝑟

𝜕𝑊

𝜕𝑟
+

1

𝑟2

𝜕2𝑊

𝜕𝜑2
)2𝑟𝑑𝑟𝑑𝜑 (19) 

The corresponding expression for the kinetic energy in 
polar coordinates has the form  

𝐾𝑚𝑎𝑥 =
𝜔2

2
∬

𝐴
𝜌ℎ𝑊2(𝑟, 𝜑)𝑟𝑑𝑟𝑑𝜑 

 

(20) 

Substituting for W from Eq. (18) into Eqs. (19) and 
(20), and evaluating the corresponding integrals, one 
obtains  

𝑈𝑚𝑎𝑥 = 𝐶2𝐷
𝜋

2
𝑅6

32

3
 

𝐾𝑚𝑎𝑥 =
𝜔2

2
𝐶2𝜋𝑅10

1

10
𝜌ℎ 

(21) 

Then, the fundamental natural frequency (the first 
approximation) may be found from Rayleigh’s 
principle for finding the lowest natural frequency of a 
vibrating plate, which is of great interest in applied 
vibration analysis. This principle is based on the 
following statement: if the vibrating system is 
conservative (no energy is added or lost), then the 
maximum kinetic energy, Kmax, must be equal to the 
maximum potential (strain) energy, Umax. Applying this 
principle, we consider an elastic plate undergoing free 
vibrations with the fundamental mode as a system 
with one degree of freedom. Taking into account that 
only free flexural vibrations are of interest, we can 
present the above principle as follows: 
 

𝑈𝑚𝑎𝑥 = 𝐾𝑚𝑎𝑥 (22) 

Therefore, the fundamental natural frequency can be 
found as follows: 

𝜔11 =
10.33

𝑅2
√

𝐷

𝜌ℎ
 (23) 

Notice that the second approximation of this 
frequency differs from the above value by 1.175% 
only.  
 

For a steel plate with the following geometric and 
mechanical parameters: 
 
 

𝜌 = 7800 𝑘𝑔 𝑚3⁄ ; 𝐸 = 200  𝐺𝑃𝑎 ; 𝜗 = 0.3 ; ℎ
= 1 𝑚𝑚 ; 𝑅 = 0.1 𝑚 

𝐷 =
𝐸ℎ3

12(1 − 𝜗2)
            𝐷 = 18.315  𝑁. 𝑚2 

𝜔11 =
10.33

0.12
√

18.315

7800 × 0.001
      ;     𝜔11

= 1582.911 𝑟𝑎𝑑 𝑠𝑒𝑐⁄   ( 𝑓
= 251.928 𝐻𝑧 ) 

 
4. The Finite Element Method (FEM) 

The finite element method (FEM) is based on 
the concept that one can replace any continuum by an 
assemblage of simply shaped elements with well-
defined force displacement and material relationships. 
While one may not be able to derive a closed-form 
solution for the continuum, one can derive an 
approximate solution for the element assemblage that 
replaced it.  

According to the FEM, a plate is discretized 
into a finite number of elements (usually, triangular or 
rectangular in shape), called finite elements and 
connected at their nodes and along interelement 
boundaries. Unknown functions (deflections, slopes, 
internal forces, and moments) are assigned in the 
form of undetermined parameters at those nodes. The 
equilibrium and compatibility conditions must be 
satisfied at each node and along the boundaries 
between finite elements [15].  

In this study a comparison between the FEM 
approach with the Ritz method for the clamped 
circular plate has been investigated and Mesh 
Convergence Curve criterion is considered to optimize 
the FEM results. For this investigation, ABAQUS 
software has been employed to derive the finite 
element model of the circular plate. The natural 
frequencies and mode shapes of the circular plate can 
be determined by Modal analysis for the finite element 
method. 

 
5. Modal analysis 

The frequency extraction procedure for Modal 
analysis can be described as follows: 
  
■ Performs eigenvalue extraction to calculate the 
natural frequencies and the corresponding mode 
shapes of a system. 
 

■ Will include initial stress and load stiffness effects 
due to preloads and initial conditions if geometric 
nonlinearity is accounted for in the base state, so that 
small vibrations of a preloaded structure can be 
modeled. 
 

■ Is a linear perturbation procedure.  
 

6. Eigenvalue extraction  

The frequency extraction procedure uses 
eigenvalue techniques to extract the frequencies of 
the current system. The eigenvalue problem for the 
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natural frequencies of an undamped finite element 
model is: 
 

(−𝜔2𝑀 + 𝐾)𝜙 = 0 (24) 

Where 

M is the mass matrix (which is symmetric and positive 
definite). 

K is the stiffness matrix (which includes initial stiffness 
effects if the base state included the effects of 
nonlinear geometry). 
ϕ is the eigenvector (the mode of vibration). 
 
If initial stress effects are not included and there are 
no rigid body modes, K is positive definite; otherwise, 
it may not be. Negative eigenvalues normally indicate 
instability. 
 

7. Geometry and problem description  

The model used for this study is a circular 
plate with fixed edge, which has been discretized by 
S4R elements, S4R: A 4-node doubly curved thin or 
thick shell, reduced integration, hourglass control, 
finite membrane strains [16]. Boundary configuration 
and typical finite element model of the circular plate 
with fixed edge are shown in Figs. 1 and 2 
respectively. Table 1 shows number of elements used 
to achieve optimum mesh for the circular plate with 
fixed edge.  

 
 

Fig. 1. Boundary configuration of the circular plate 
with fixed edge. 

 
Fig. 2. Typical finite element model of the circular 

plate with fixed edge. 
 
 

Table 1. Number of elements used to achieve 
optimum mesh of the circular plate with fixed edge. 

A.G.S 
Number of 
Elements 

Natural 
Frequency 
(𝜔11 ; 𝑟𝑎𝑑/

𝑠𝑒𝑐) 

Natural 
Frequency 

(𝑓 ; 𝐻𝑧) 

0.028 57 1645.126 261.83 

0.02 111 1601.898 254.95 

0.01 429 1574.126 250.53 

0.015 203 1587.572 252.67 

0.014 221 1581.038 251.63 

0.013 256 1579.907 251.45 

0.012 291 1578.148 251.17 

 
Where A.G.S is Approximate Global Size. Based on 
the table, the fundamental natural frequency for the 
circular plate from Finite Element analysis compared 
to the Ritz method can be obtained when A.G.S is 
0.014 and Number of Elements equals to 221. In this 
case, the fundamental natural frequency equals to 

ω11 = 1581.038 rad/sec ; f = 251.63 Hz . According to 
the Mesh Convergence criterion, the above mesh 
(221 elements) is the optimum one, since the error is 
minimum and we have:   
 
1581.038 − 1579.907

1579.907
× 100 = 0.0716% < 5% 

Fig. 3 illustrates the Mesh Convergence Curve from 
finite element analysis of the circular plate with fixed 
edge.  

 
Fig. 3. Mesh convergence curve for the finite element model 

of the circular plate with fixed edge.  

 
The first 10 mode shapes for the vibrated circular 
plate are shown in the following figures, Fig. 4. It is 
clear that by increasing mode number, the natural 
frequency is increased. 
 

Mode Shape 1:  
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Mode Shape 2: 

 
Mode Shape 3: 

 
Mode Shape 4: 

 
Mode Shape 5: 

 
 

 

Mode Shape 6: 

 
 
 
 
 
 

Mode Shape 7: 

 
Mode Shape 8: 

 
Mode Shape 9: 

 
Mode Shape 10: 

 
Fig. 4. Mode shapes and natural frequencies of the circular 

plate with fixed edge.  

 
8. Conclusion 

A finite element model was presented for this 
study. This paper reviewed the capability of the shell 
element (S4R) provided by commercialized FEA 
codes, and discussed a simple case of dynamic finite 
element analysis. Based on the finite element 
modeling technique, the study showed admissible 
results in comparison with the Ritz method for a 
circular plate with fixed edge. According to the finite 
element modeling technique, we are able to simulate 
more complicated models in ABAQUS, which is 
difficult to present exact or approximate solutions for 
them to predict the fundamental natural frequency.  
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