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Abstract— In this paper, applied Regula–Falsi    
iterative approach for the computation of 
eccentricity anomaly of Keplerian orbits was 
presented.  The flowchart and relevant 
mathematical expressions for the applied Regula–
Falsi    approach were presented. The two initial 
guess values required by Regula–Falsi  algorithm 
were determined using analytical models based 
on the bounds on the value of eccentricity 
anomaly for any given values of orbital 
eccentricity and mean anomaly. Some sample 
computations of eccentricity anomaly were 
conducted with different combinations of the 
values of eccentricity (e) and mean anomaly (M). 
The convergence cycle of the Regula–Falsi  
algorithm was noted in each case. In all, different 
combinations of the values of M and e gave rise to 
different convergence cycles. According to the 
results, for eccentricity (e =0.99),  mean anomaly 
(M =1°) and tolerance error , 𝛆 set in the order of 

 𝟏𝟎−𝟏𝟓 ,  the Regula–Falsi  algorithm converged 
after 28 cycles with eccentricity anomaly (E  
=0.4240960 radians = 24.30°). Similarly, for 
eccentricity (e =0.5),  mean anomaly (M =42°) and 

tolerance error, 𝛆 set in the order of  𝟏𝟎−𝟏𝟓,  the 
Regula–Falsi  algorithm converged after 2 cycles 
with eccentricity anomaly (E  =1.1988490 radians = 
68.68°).  Furthermore, for eccentricity (e =0.5),  
mean anomaly (M =42°) , e =  0.9 and tolerance 

error , 𝛆 set in the order of  𝟏𝟎−𝟏𝟓,  the Regula–
Falsi  algorithm converged after 4 cycles with 
eccentricity anomaly (E  =1.1988490 radians = 
68.68°). In all, Regula–Falsi    algorithm can 
effectively be used to compute the eccentricity 
anomaly of Keplerian orbits. However, the 
convergence of the algorithm is dependent on the 
combination of the values of e and M. 
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1.   INTRODUCTION 

Over the years, Regula–Falsi iteration (RFI) scheme has 

been used to solve transcendental equations that have no 

closed-form solutions [1,2,3,4,5,67,8,9].  Basically, 

Regula–Falsi    algorithm requires two initial guess roots, 

say XL and XU, for the function such that the actual root, 

say X, is bracketed by the two guess roots,  hence, XL ≤ X 

≤ XU [10,11,12,13,14,15].  Finding the two initial guess 

roots that satisfy the root bracketing requirement is always 

a challenge to users of the classical RFI scheme. In any 

case, some functions have known upper and lower bounds 

on the expected root value. In such case, applying the 

classical RFI scheme becomes easy. 

Consequently, in this paper the RFI scheme is applied in the 

determination of the eccentricity anomaly (E) of Keplerian 

orbits based on the knowledge of mean anomaly (M) and 

the orbital eccentricity (e) [16,17,18,19]. Available study 

showed that for any given values of M and e, the value of E 

is such that M ≤ E ≤ M + e [20,21,22,23]. In that such case, 

M and M +e can serve as affective two initial guess roots 

for the computation of the eccentricity anomaly of 

Keplerian orbits. 

In any case, the number of iterations required for the 

convergence of numerical iteration schemes reduces as the 

initial guess roots are closer to the actual roots. In that case, 

instead of using M as the lower bound on the initial value 

of E, some published works have presented some other 

initial start values that are lower than  E but also closer to 

the value of E than the value of M. In this paper, one of 

such initial guess roots values are used in RFI scheme to 

determine the eccentricity anomaly for Keplerian orbits. 

The study also examined the convergence performance of 

the RFI algorithm under different combinations of the 

values of e and M. 

2.  METHODOLOGY  

As study presented in [20] stated that for Keplerian orbit 

with mean anomaly (M) and eccentricity (e), the maximum 

possible value of the eccentricity anomaly (E) is given as M 

+e while the lowest value of E is M. However, in [20] , a 

more efficient initial lower value of E is defined as given in 

Eq 2. Hence, the two initial guess values for E are, the 

initial lower value (denoted as 𝑋𝐿(0)) and the  initial upper 

value (denoted as 𝑋𝑈(0)), where; 

𝑋𝑈(0) = 𝑀 + 𝑒                            (1) 

𝑋𝐿(0) = 𝑀 +
𝑒(sin (𝑀))

1−sin (𝑀+𝑒)+sin (𝑀)
                         (2) 

These two initial values are then used in the classical 

Regula–Falsi    iteration algorithm to iteratively determine 

the actual value of E (denoted as X(k)) , where k is the 

iteration cycle counter with value, k =1,2,3,…. Then, for 

any given cycle, k, the corresponding actual value of E 

(denoted as X(k)) computed by the Regula–Falsi    method 

is given as;   
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x(k) =
xL(k−1)∗f(xu(k−1))−xu(k−1)∗f(xL(k−1)) 

 f(xu(k−1))−f(xL(k−1))  
                   (3) 

After x(k)  is determined, the f(x(k))  is computed and 

compared with the specified tolerance error, 𝛆; if f(x(k)) <

 𝛆  then x(k)  is the actual value of E otherwise 𝑥𝐿(𝑘)  and 

𝑥𝑈(𝑘)  are determined based on the Regula–Falsi    

algorithm, k is incremented by 1 and  x(k) is recomputed. 

The iteration continues until a value of  x(k)  for which 

f(x(k)) <  𝛆 is obtained. The flowchart of the Regula–Falsi    

algorithm for computing eccentricity anomaly (E) is given 

in Figure 1. 

 

 
Figure 1 The flowchart for the Regula–Falsi  used to determine the eccentricity anomaly (E) of Keplerian orbit

f(𝐱𝐋)*f(𝐱𝐔)<0 
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 xU  = x(k)   xL = x(k)  

  𝐟(x(k))  <  𝛆 
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 𝐟(𝒙𝒖(𝒌−𝟏))−𝐟(𝒙𝑳(𝒌−𝟏))  
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            𝐱𝐋(𝟎) = 𝑀 +
𝑒(sin(𝑀))

1−sin(𝑀+𝑒)+sin(𝑀)
 

            𝐱𝐮(𝟎) = 𝐌+ 𝐞 

           𝒇(𝐱𝐋(𝟎)) = 𝐚𝐋 −𝐌− 𝑒(sin(𝑀)) 

           𝒇(𝐱𝐔(𝟎)) = 𝐱𝐔 −𝐌− 𝑒(sin(𝑀)) 
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3  RESULTS AND DISCUSSION 

 

The Regula–Falsi  flowchart in Figure 1 was implemented 

in Matlab for different combinations of values of M and e. 

The results for E for  M (°) =1 and e =  0.99  are shown in 

Table 1 where the computed initial lower and upper values 

of    xL(0)=  0.1179191 radians =  6.76° and   xu(0) = 

1.0074533 radians = 57.72°.With tolerance error , ε set in 

the order of  10−15, the results in Table 1 show  that it 

took about 28 Regula Fasi iterations for the actual value of 

eccentricity (E) =0.4240960 radians = 24.30° to be 

obtained with error of 8.66E-15 radians. 
 

The results for E for  M (°) =42 and e =  0.5  are shown in 

Table 2 where the computed initial lower and upper values 

of    𝐱𝐋(𝟎)=  1.1941066radians =  68.41° and   𝐱𝐮(𝟎) = 

1.2330383 radians = 70.64°.With tolerance error , ε 

set in the order of  10−15, the results in Table 2 show  that 

it took about 3 Regula Fasi iterations for the actual value 

of eccentricity (E) =1.1988490 radians = 68.68° to be 

obtained with error of 8.66E-15 radians. 
 

The results for E for  M (°) =120 and e =  0.9   are shown 

in Table 3 where the computed initial lower and upper 

values of    𝐱𝐋(𝟎)=  2.5477169 radians =  145.95° and  

 𝐱𝐮(𝟎) = 2.9943951radians = 171.54°.With tolerance error 

, ε set in the order of  10−15, the results in Table 3 show  

that it took about 4 Regula Fasi iterations for the actual 

value of eccentricity (E) =1.1988490 radians = 68.68° to 

be obtained with error of 8.66E-15 radians. 
In all, different combinations of the values of M   and e 

give rise to different convergence cycle, as shown in Table 

1, Table 2 and Table 3. 

 

Table 1   Regula Fasi iteration results for E using the computed initial lower and maximum values of E where  M (°) =1; 

e =  0.99;   𝐱𝐋(𝟎)=  0.1179191 radians =  6.76° and   𝐱𝐮(𝟎) = 1.0074533 radians = 57.72° 

Cycle  𝐱𝐋  (radians)  𝐱𝐮 (radians) X  (radians) X  (degree) f(XL)*f(x) (radians) 

0 0.1179191 1.0074533 0.2021631 11.58 2.25E-04 

1 0.2021631 1.0074533 0.2699947 15.47 1.62E-04 

2 0.2699947 1.0074533 0.3216294 18.43 1.01E-04 

3 0.3216294 1.0074533 0.3588368 20.56 5.52E-05 

4 0.3588368 1.0074533 0.3844524 22.02 2.71E-05 

5 0.3844524 1.0074533 0.4014926 23.00 1.22E-05 

6 0.4014926 1.0074533 0.4125577 23.63 5.24E-06 

7 0.4125577 1.0074533 0.4196271 24.04 2.16E-06 

8 0.4196271 1.0074533 0.4240960 24.30 8.66E-07 

9 0.4240960 1.0074533 0.4269018 24.46 3.43E-07 

10 0.4269018 1.0074533 0.4286559 24.56 1.34E-07 

11 0.4286559 1.0074533 0.4297495 24.62 5.23E-08 

12 0.4297495 1.0074533 0.4304301 24.66 2.03E-08 

13 0.4304301 1.0074533 0.4308533 24.68 7.84E-09 

14 0.4308533 1.0074533 0.4311163 24.70 3.03E-09 

15 0.4311163 1.0074533 0.4312796 24.71 1.17E-09 

16 0.4312796 1.0074533 0.4313810 24.71 4.50E-10 

17 0.4313810 1.0074533 0.4314440 24.72 1.74E-10 

18 0.4314440 1.0074533 0.4314831 24.72 6.69E-11 

19 0.4314831 1.0074533 0.4315073 24.72 2.58E-11 

20 0.4315073 1.0074533 0.4315224 24.72 9.93E-12 

21 0.4315224 1.0074533 0.4315317 24.72 3.83E-12 

22 0.4315317 1.0074533 0.4315375 24.72 1.47E-12 

23 0.4315375 1.0074533 0.4315411 24.72 5.68E-13 

24 0.4315411 1.0074533 0.4315434 24.72 2.19E-13 

25 0.4315434 1.0074533 0.4315447 24.72 8.43E-14 

26 0.4315447 1.0074533 0.4315456 24.72 3.25E-14 

27 0.4315456 1.0074533 0.4315461 24.72 1.25E-14 

28 0.4315461 1.0074533 0.4315465 24.72 4.82E-15 
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Table  2   Regula Fasi iteration results for E using the computed initial lower and maximum values of E where  M (°) = 

42; e =  0.5;   𝐱𝐋(𝟎)=  1.1941066radians =  68.41° and   𝐱𝐮(𝟎) = 1.2330383 radians = 70.64° 

Cycle  𝐱𝐋  (radians)  𝐱𝐮 (radians) X  (radians) X  (degree) f(XL)*f(x) (radians) 

0 1.1941066 1.2330383 1.1988030 68.68 1.46E-07 

1 1.1988030 1.2330383 1.1988485 68.68 1.37E-11 

2 1.1988485 1.2330383 1.1988490 68.68 1.28E-15 

3 1.1988490 1.2330383 1.1988490 68.68 1.20E-19 

4 1.1988490 1.2330383 1.1988490 68.68 1.12E-23 

5 1.1988490 1.2330383 1.1988490 68.68 1.03E-27 

 

 

Table  3  Regula Fasi iteration results for E using the computed initial lower and maximum values of E where  M (°) = 

120; e =  0.9;    𝐱𝐋(𝟎)=  2.5477169 radians =  145.95° and   𝐱𝐮(𝟎) = 2.9943951radians = 171.54° 

Cycle  𝐱𝐋  (radians)  𝐱𝐮 (radians) X  (radians) X  (degree) f(XL)*f(x) (radians) 

0 2.5477169 2.9943951 2.5751726 147.53 1.09E-04 

1 2.5751726 2.9943951 2.5763569 147.60 1.99E-07 

2 2.5763569 2.9943951 2.5764068 147.60 3.54E-10 

3 2.5764068 2.9943951 2.5764089 147.60 6.27E-13 

4 2.5764089 2.9943951 2.5764090 147.60 1.11E-15 

5 2.5764090 2.9943951 2.5764090 147.60 1.97E-18 

6 2.5764090 2.9943951 2.5764090 147.60 3.49E-21 

7 2.5764090 2.9943951 2.5764090 147.60 6.18E-24 

 

 

4. CONCLUSION 

Application of Regula–Falsi  iteration algorithm in the 

computation of the eccentricity anomaly is presented. The 

analytical models for the selection of the two initial guess 

values were presented along with the flowchart for the 

applied Regula–Falsi    method. Some  sample 

computations of eccentricity anomaly were conducted 

with different combinations of the values of eccentricity 

and mean anomaly. The convergence cylcle of the 

Regula–Falsi  algorithm was noted in each case. In all, 

different combinations of the values of M   and e give rise 

to different convergence cycle. 
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