Analysis Of Net Zero Solar Photovoltaic Energy Installation At Uniport's Africa Centre Of Excellence For Public Health And Toxicological Research

Ikrang, Elijah George¹ Department of Agricultural and Food Engineering, University of Uyo, Akwa Ibom, Nigeria Olatunbosun Emmanuel Dapo² Directorate Department, Advanced Space Technology Applications Laboratory, Uyo, Akwa Ibom, Nigeria oladapobonty@yahoo.co.uk Uwakwe Chikwado³

Department of Electrical/Electronic Engineering Imo State Polytechnic, Umuagwo, Owerri, Nigeria

Abstract-Basically, centre for public health and toxicological researches seek to develop educational and policy frameworks, as well as products and services that will promote safety, improve health and prolong the life of communities and their environment. Such centre relies on modern technologies that support extensive research collaborations. Importantly, effective power supply is paramount to achieving such objective. Notably, in situations of epileptic grid power supply, net zero photovoltaic power supply is an environmentally friendly power system that ensures energy sufficiency for its load. Consequently, in this paper, comparative analysis of net zero grid-connected solar photovoltaic energy power installation at University of Port (UNIPORT) Africa centre of excellence for public health and toxicological research is presented. The study site longitude and latitude are 4.77° and 7.02° respectively. The UNIPORT'S Africa centre of excellence for public health and toxicological research is expected to have a 10 kW PV power that can sustain its daily activities for 10.967 hours a day. This amounts to a daily load of 109.67 kWh/day and annual load of 40030 kWh/year. The analysis is simulated in PVSyst software for three different annual optimal tilt angle orientations of the PV panels, namely; yearly fixed optimal tilt angle of 8°, yearly fixed at Summer months optimal tilt angle of 0° and yearly fixed at Winter months optimal tilt angle of 28°. The results showed that for the yearly fixed tilt angle of 8° , the annual imported nergy and exported energy are both 23777 kWh/year resulting in a net energy of 0 kWh/year. Also, the annaul energy yield of the PV array is 40030 kWh/year which is also the same as the annual load demand. The self-consumed energy (which is 16253 kWh/year) and exported energy to the grid (which is 23777 kWh/year) sum up to 40030 kWh/year. The simulation results for

the yearly fixed at Summer months optimal tilt angle of 0° showed that the annual imported energy is -23773 kWh/year and the exported energy is 23633 kWh/year, resulting in annual net energy deficit of -140 kWh/year. In all, the results showed that the simulation at yearly fixed installation at angle of $0^\circ\,$ gave the best result with highest annul energy yeild of 40030 kWh/year and net energy of 0 kWh/year. The yearly fixed installation at Winter months optimal tilt angle of 28° gave the worst result with the lowest annual energy yeild of 38172 kWh/year and net energy of -1858 kWh/year. As such, the results showed that the PV tilt angle has significant influence on the energy yeild of the PV power installation at the case study site.

Keywords— Net Zero Energy, Optimal Tilt Angle, Grid-Connected, Load Demand, Energy Yeild, Solar PV Power

1. INTRODUCTION

Public health is the application of education, policy and research to protect the safety, improve the health and prolong the life of communities or groups [1,2,3,4,5,6,7,8,9,10]. It involves analysis of the determinants of health of the community or group and the threats the community or group faces. On the other hand, toxicology is basically a 'science of safety', which applies scientific approaches to explain harmful effects of chemicals, substances and situations on human beings, animals and the environment [11,12,13,14,15,16,17,18,19]. It evaluates the probability that adverse effects can occur when human beings, animals or the environment are exposed to certain chemicals, substances or situations. The case study African center of excellence for public health and toxicological research is focused on such studies that address public health and toxicological issues. The center relies on multidisciplinary researches that their success depends on expertise located in different institutions across Africa and beyond. Such extensive collaboration requires modern research facilities and communication technologies that rely on effective power supply.

However, one of the major impediments to effective functioning of such centers across Nigeria is the epileptic power supply from the national grid [20,21,22,23,24,25,26,27]. The immediate alternative power source is the fossil fuel power generators. However, such power sources have been identified as hazardous to both human and the environment [28,29,30]. As such, photovoltaic (PV) power systems and other environmental friendly power supply systems have become the preferred alternative power supply for such center that seeks to promote public and environmental health.

In this paper, the PV power system that is designed for net-zero power supply to the world bank-funded University of Port Harcourt African center of excellence for public health and toxicological research (ACE-PUTOR UniPort) is presented. Furthermore, the effect of the PV module tilt angle on the PV system performance is also studied. In all, net-zero PV power system is a grid connected system where the PV array energy yield over the year is expected to satisfy the annual energy demand of the load without any deficit. In that case, the annual sum of energy exported to the grid is equal to the annual energy imported from the grid. Such PV power system for the ACE-PUTOR UniPort means that the center is self-sufficient in its annual energy generation from the PV power system.

2. METHODOLOGY

2.1 Analytical Expressions for Net Zero PV Power System

Let E_{DAVAIL} be the daily generated energy by the PV array and it is expressed in Wh.day, hence;

 $E_{DAVAIL} = (N_{PV})(P_{Wp})(PSH)(f_{PV_derat}) (1)$ Where the rated power of each PV panel is P_{Wp} , N_{PV} is the number of PV panels in the array, *PSH* is the peak sun hour per day and f_{PV_derat} is the PV de-rating factor. Now, let E_{DL} be the daily load demand in Wh/day, E_{DSC} be the daily selfconsumed energy, E_{DIMPT} be the daily imported energy from the grid to make up for any deficit when $E_{DSC} - E_{DL} < 0$, and E_{DEXPT} be the daily exported energy to the grid to make up for any excess when $E_{DSC} - E_{DAVAIL} > 0$. When E_{DSC} and E_{DL} are given and E_{DAVAIL} is computed, then, the daily imported and exported energies are;

$$E_{\text{DIMPT}} = MINIMUM(0, (E_{\text{DSC}} - E_{\text{DL}})) (2)$$
$$E_{\text{DEXPT}} = MAXIMUM(0, (E_{\text{DAVAIL}} - E_{\text{DSC}})) (3)$$

On a monthly basis,

$$\mathbf{E}_{\mathsf{MSC}=\sum_{d=1}^{N_m} (\mathbf{E}_{\mathsf{DSC}(d)})} \tag{4}$$

 $E_{MDL=\sum_{d=1}^{N_m} (E_{DL(d)})}$ (5)

$$\mathsf{E}_{\mathsf{MAVAII}=\Sigma^{N_m}(\mathsf{E}_{\mathsf{PAVAV}}(\mathsf{c}))} \tag{6}$$

Where the number of days in the month m is represented as N_m .

$$E_{\text{MIMPT}} = \sum_{d=1}^{N_m} \left(MINIMUM \left(0, (E_{\text{DSC}} - E_{\text{DL}}) \right) \right) (7)$$
$$- \sum_{m}^{N_m} \left(MAXIMIM \left(0, (E_{\text{DSC}} - E_{\text{DL}}) \right) \right) (8)$$

$$\mathbf{E}_{\text{MEXPT}} = \sum_{d=1}^{N_m} \left(MAXIMUM(0, (\mathbf{E}_{\text{DAVAIL}} - \mathbf{E}_{\text{DSC}})) \right) (8)$$

On annual basis,

$$E_{ANSC=\sum_{d=1}^{365} (E_{DSC(d)})}$$
(9)

$$E_{ANDL=\sum_{d=1}^{365} (E_{DL(d)})}$$
(10)

$$E_{\text{ANAVAIL}=\sum_{d=1}^{365} (E_{\text{DAVAIL}(d)})}$$
(11)
$$E_{\text{ANIMPT}} = \sum_{d=1}^{365} (MINIMUM(0, (E_{\text{DSC}} - E_{\text{DL}}))) (12)$$

 $E_{\text{ANEXPT}} = \sum_{d=1}^{365} \left(MAXIMUM(0, (E_{\text{DAVAIL}} - E_{\text{DSC}})) \right) (13)$

2.2 The study site solar radiation data

The longitude and latitude of the PV installation site are 4.77° and 7.02° respectively (Figure 1). The Google map plot of the study site is shown in Figure 2 while the monthly and annual average meteorological data of the study site is presented in Figure 3. The UNIPORT'S Africa centre of excellence for public health and toxicological research is expected to have a 10 kW PV power that can sustain its daily activities for about 10.5 to 11 hours. In this paper, a 10 kW power supply that can supply energy to the center for 10.967 hours a day is selected. This system amounts to a daily load of 109.67 kWh/day and annual load of 40030 kWh/year.

	dinates Monthly meteo Interactive Map Project location	
Location Site name	Port Harcourt	💮 Show map
Country	Nigeria Region Africa	Meteo data Import
Geograp	hical Coordinates	○ NASA-SSE
Latitude Longitude	Decimal Deg. min. 4.77 [°] 4 46 (+ = North, - = South hemisph.) 7.02 [°] 7 1 (+ = East, - = West of Greenwich)	Tabular I/O (Excel)
Altitude Time zone	16 M above sea level 1.0 Corresponding to an average difference	Export line

Figure 1 The longitude and latitude of the PV installation site

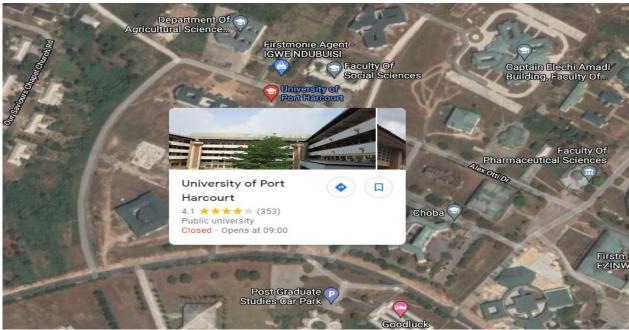
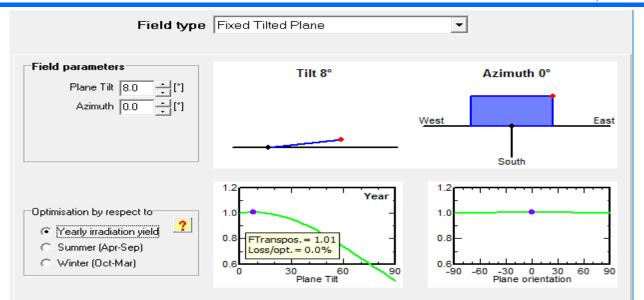
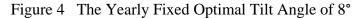


Figure 2 The Google map plot of the study site

Site	Port Harc	ourt (Nige	ria)		
Data source	Meteonorm	n 7.1			
	Global Irrad. kWh/m².mth	Diffuse kWh/m².mth	Temper. °C	Wind Vel. m/s	
January	130.7	87.3	27.4	0.99	
February	122.8	77.4	28.2	1.19	Required Data
March	135.0	94.7	28.0	1.30	Horizontal global irradiation
April	131.2	85.5	27.0	1.20	
May	130.7	84.7	27.2	1.19	Average Ext. Temperature
June	116.6	81.4	25.8	1.19	Extra data
July	110.5	76.5	25.6	1.20	Horizontal diffuse irradiation
August	104.2	72.6	24.9	1.30	✓ Wind velocity
September	116.3	73.0	25.1	1.20	Irradiation units
October	123.1	75.4	26.1	1.19	C kWh/m².day
November	121.7	76.3	26.4	1.08	
December	131.5	84.1	27.4	0.99	⊂ MJ/m².day
Year	1474.3	968.9	26.6	1.2	⊂ MJ/m².mth
	Paste	Paste	Paste	Paste	C W/m² C Clearness Index Kt


Figure 3 The monthly and meteorological data of the study site


3. Results and Discussion

PVSyst program was used to run the net zero analysis based on the estimated annual energy demand of 40030 kWh/year and for different optimal tilt angles. The first set of simulations were for a yearly fixed optimal tilt angle of 8° (Figure 4) and the simulation parameters are shown in Figure 5.

The silmulation results on the monthly and annual energy use, user's energy needs, imported energy, exported energy and net energy at yearly fixed tilt angle of 8° are shown in Table 1, Figure 6 and Figure 7. The results showed that annual

imported energy and exported energy are both 23777 kWh/year resulting in a net energy of 0 kWh/year. Also, the annual energy yield of the PV array is 40030 kWh/year which is also the same as the annual load demand. The self-consumed energy (which is 16253 kWh/year) and exported energy to the grid (which is 23777 kWh/year) sum up to 40030 kWh/year. Essentially, for the yearly fixed tilt angle of 8°, a net zero energy is achieved with the given set of simulation parameters; imported energy from the grid = exported energy to the grid).

PVSYST V6.70				05/06/21	Page 1/3
Grid-C	onnected System	n: Simulation pa	arameters	\$	
Project : UNIPO	ORT ACE-PUTOR G				
Geographical Site	Port Harcourt		Country	y Nigeria	l
Situation	Latitude	4.77° N	Longitude	e 7.02° E	
Time defined as	Legal Time Albedo		Altitude	e 16 m	
Meteo data:	0.20 Meteonorm 7.1 - Syr	thetic			
		weteonom 7.1 - Syr	luieuc		
Simulation variant : New s	imulation variant				
	Simulation date	05/06/21 01h45			
Simulation parameters	System type	No 3D scene define	d		
Collector Plane Orientation	Tilt	8°	Azimuth	h 0°	
Models used	Transposition	Perez Diffus		e Perez, Meteonorm	
Horizon	Free Horizon				
Near Shadings	No Shadings				
PV Array Characteristics					
PV module Original PVsyst database	Si-mono Model Manufacturer	NU-RD 300 Sharp			
Number of PV modules		18 modules	In paralle	6 strings	
Total number of PV modules	Nb. modules	108 Uni	t Nom. Powe		
Array global power	Nominal (STC)		perating cond	. 29.44 kV	Np (50°C)
Array operating characteristics (50°			I mpp		
Total area	Module area	177 m²	Cell area	a 155 m²	
Inverter		Powador 39.0 TL3	KL		
Original PVsyst database	Manufacturer				1
Characteristics	Operating Voltage		it Nom. Powe	r 33.3 kV	vac
Inverter pack	Nb. of inverters	3 * MPPT 33 %	Total Powe Pnom ratio		c

Figure 5 The PV power system simulation parameters

Table 1	PVSyst Result on Monthly and Annual Energy Use, User's Energy Needs, Energy yield of the
PV /	Array, Imported Energy, Exported Energy and Net Energy at Yearly Fixed Tilt Angle of 8°

	E Avail (kWh)	E Load or Load Demand (kWh)	E User or Self Consumed Energy (kWh)	E_Grid (kWh)	SolFrac (kWh)	Deficit or Imported Energy (kWh)	Excess or Exported Energy (kWh)	Net Energy from and to The Grid (kWh)
Jan	3665	3400	1391	2274	0.409	-2009	2274	265
Feb	3363	3070	1252	2111	0.408	-1818	2111	293

1 1				ĺ	1		1	
Mar	3649	3400	1415	2234	0.416	-1985	2234	249
April	3482	3290	1381	2101	0.420	-1909	2101	192
May	3420	3400	1428	1992	0.420	-1972	1992	20
June	3073	3290	1359	1714	0.413	-1931	1714	-217
July	2923	3400	1359	1564	0.400	-2041	1564	-477
Aug	2796	3400	1294	1502	0.381	-2106	1502	-604
Sept	3150	3290	1285	1865	0.391	-2005	1865	-140
Oct	3373	3400	1335	2038	0.393	-2065	2038	-27
Nov	3418	3290	1346	2072	0.409	-1944	2072	128
Dec	3718	3400	1408	2310	0.414	-1992	2310	318
Year	40030	40030	16253	23777	0.406	-23777	23777	0

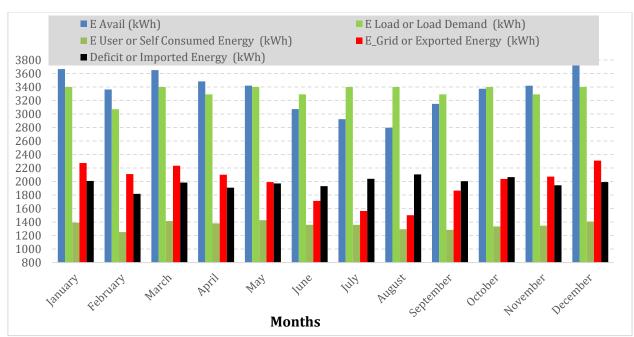
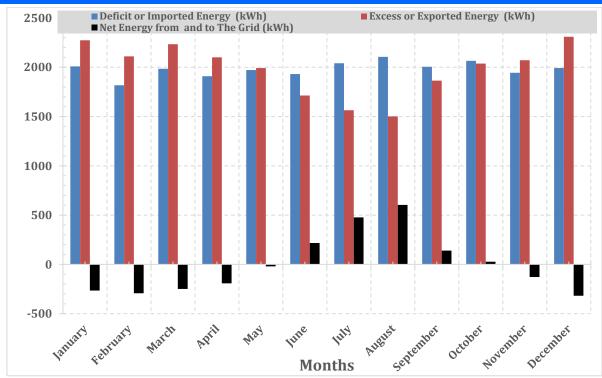
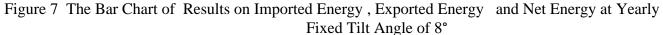




Figure 6 The Bar Chart of Results on Available Energy at the output of the PV Array, Load Demand, Self-Consumed Energy, Imported Energy and Exported Energy at Yearly Fixed Tilt Angle of 8°

The simulation was repeated for the two other cases, namely, the yearly fixed at Summer months optimal tilt angle of 0° and yearly fixed at Winter months optimal tilt angle of 28°. The silmulation results on the monthly and annual energy use, user's energy needs, imported energy, exported energy and net energy at yearly fixed at Summer months optimal tilt angle of 0° (Figure 8) are shown in Table 2. The results showed that annual imported energy is -23773 kWh/year and exported energy is 23633 kWh/year resulting in a net energy of -140 kWh/year.

Similarly, the silmulation results on the monthly and annual energy use , user's energy needs, imported energy , exported energy and net energy at yearly fixed at Winter months optimal tilt angle of 28° (Figure 9) are shown in Table 3. The results showed that annual imported energy is -23997 kWh/year and exported energy is 22139 kWh/year resulting in a net energy of -1858 kWh/year.

In all, the results shown in Table 3 and Figure 10 showed that the simulation at yearly fixed installation at angle of 0° gave the best result with highest annul energy yeild of 40030 kWh/year and net energy of 0 kWh/year. The yearly fixed installation at Winter months optimal tilt angle of 28° gave the worst result with the lowest annul energy yeild of 38172 kWh/year and net energy of -1858 kWh/year.

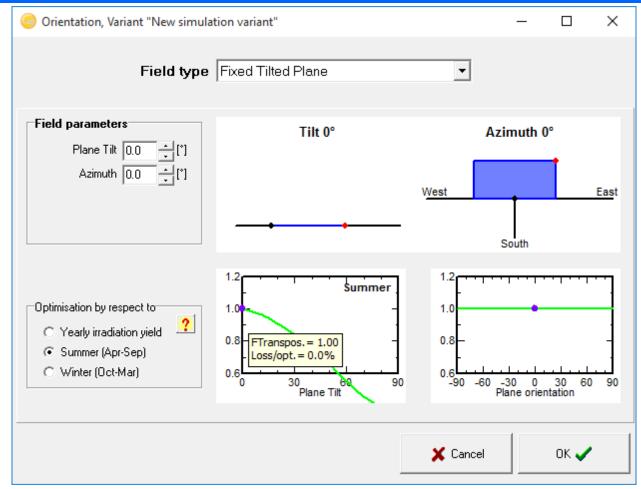


Figure 8 The Yearly Fixed Summer Months optimal tilt angle of 0°

Table 2 PVSyst Result on Monthly and Annual Energy Use, User's Energy Needs, Energy yield of the
PV Array, Imported Energy, Exported Energy and Net Energy at Yearly Fixed at Summer months
optimal tilt angle of 0°

				- F · · · ·	the angle (Net
			E User or					Energy
		E Load or	Self				Excess or	from and
		Load	Consumed			Deficit or	Exported	to The
	E Avail	Demand	Energy	E_Grid	SolFrac	Imported Energy	Energy	Grid
	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)
January	3526	3400	1381	2145	0.406	-2019	2145	126
February	3283	3070	1249	2034	0.407	-1821	2034	213
March	3629	3400	1415	2214	0.416	-1985	2214	229
April	3533	3290	1386	2147	0.421	-1904	2147	243
May	3526	3400	1436	2090	0.422	-1964	2090	126
June	3189	3290	1369	1820	0.416	-1921	1820	-101
July	3025	3400	1369	1656	0.403	-2031	1656	-375
August	2856	3400	1301	1555	0.383	-2099	1555	-544
September	3158	3290	1288	1870	0.391	-2002	1870	-132
October	3318	3400	1332	1986	0.392	-2068	1986	-82
November	3293	3290	1337	1956	0.406	-1953	1956	3
December	3554	3400	1394	2160	0.410	-2006	2160	154
Year	39890	40030	16257	23633	0.406	-23773	23633	-140

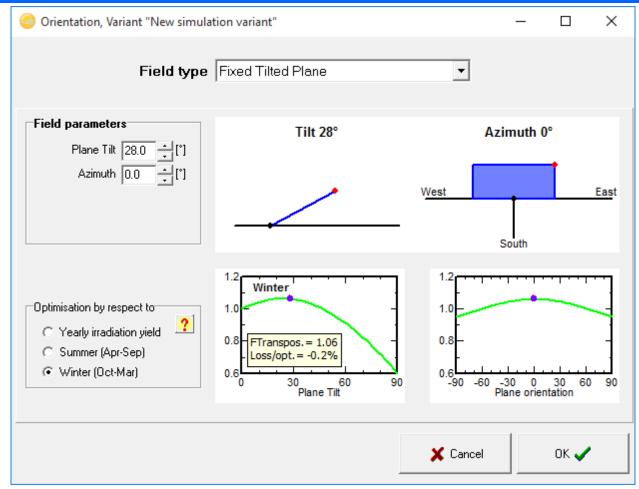


Figure 9 The Yearly Fixed Winter months optimal tilt angle of 28°

Table 3 PV	VSyst Result on Monthly and Annual Energy Use, User's Energy Needs, Energy yield of the
	PV Array, Imported Energy, Exported Energy and Net Energy at Yearly Fixed at Winter
	months optimal tilt angle of 28°

r	months optimal tilt angle of 28									
								Net		
			E User or				Excess	Energy		
		E Load	Self			Deficit or	or	from		
		or Load	Consumed			Imported	Exported	and to		
	E Avail	Demand	Energy	E_Grid	SolFrac	Energy	Energy	The Grid		
	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)		
January	3805	3400	1401	2404	0.412	-1999	2404	405		
February	3372	3070	1247	2125	0.406	-1823	2125	302		
March	3507	3400	1404	2103	0.413	-1996	2103	107		
April	3163	3290	1352	1811	0.411	-1938	1811	-127		
May	2965	3400	1380	1585	0.406	-2020	1585	-435		
June	2617	3290	1309	1308	0.398	-1981	1308	-673		
July	2512	3400	1310	1202	0.385	-2090	1202	-888		
August	2500	3400	1260	1240	0.371	-2140	1240	-900		
September	2958	3290	1264	1694	0.384	-2026	1694	-332		
October	3325	3400	1327	1998	0.390	-2073	1998	-75		
November	3536	3290	1356	2180	0.412	-1934	2180	246		
December	3912	3400	1423	2489	0.419	-1977	2489	512		
Year	38172	40030	16033	22139	0.401	-23997	22139	-1858		

Table 4 Comparison of the Net Energy for the three cases; Yearly Fixed optimal tilt angle of 8°, Yearly Fixed at Summer months optimal tilt angle of 0° and Yearly Fixed at Winter months optimal tilt

	E Avail (kWh)	E Load or Load Demand (kWh)	E User or Self Consumed Energy (kWh)	E_Grid (kWh)	Deficit or Imported Energy (kWh)	Net Energy from and to The Grid (kWh)
Fixed at Optimal Tilt Angle of 8°	40030	40030	16253	23777	23777	0
Fixed at Summer Months Optimal Tilt Angle of 0°	39890	40030	16257	23633	23773	-140
Fixed at Winter Months Optimal Tilt Angle of 28°	38172	40030	16033	22139	23997	-1858

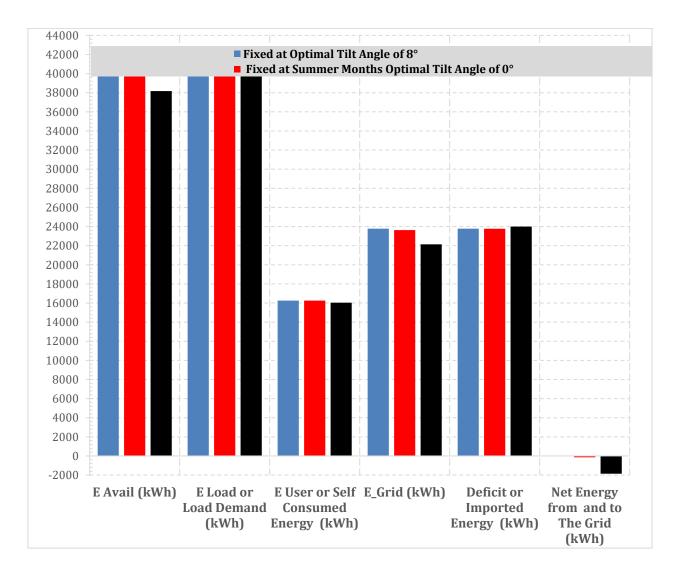


Figure 10 Comparison of the Net Energy for the three cases; Yearly Fixed optimal tilt angle of 8°, Yearly Fixed at Summer months optimal tilt angle of 0° and Yearly Fixed at Winter months optimal tilt angle of 28°

4. CONCLUSION

A grid-connected PV power system at University of Port, Rivers State Nigeria is analyzed for net zero operation based on three different annual optimal tilt angle orientations of the PV panels. The optimal tilt angles are obtained from PVSyst orientation dialogue box which gave yearly fixed optimal tilt angle of 8°, yearly fixed at Summer months optimal tilt angle of 0° and yearly fixed at Winter months optimal tilt angle of 28°. The results showed that the simulation at yearly fixed installation at angle of 0° gave the best result with highest annual energy yeild and net zero energy while the yearly fixed installation at Winter months optimal tilt angle of 28° gave the worst result with the lowest annual energy yeild and highest energy deficit (imported energy) per year. In all, the results showed that the PV tilt angle has significant influence on the energy yeild of the PV power system.

References

- Dannenberg, A. L., Jackson, R. J., Frumkin, H., Schieber, R. A., Pratt, M., Kochtitzky, C., & Tilson, H. H. (2003). The impact of community design and land-use choices on public health: a scientific research agenda. *American journal of public health*, 93(9), 1500-1508.
- 2. World Health Organization. (2017). Global action plan on the public health response to dementia 2017–2025.
- Douglas, M., Katikireddi, S. V., Taulbut, M., McKee, M., & McCartney, G. (2020). Mitigating the wider health effects of covid-19 pandemic response. *Bmj*, 369.
- Brownson, R. C., Eyler, A. A., Harris, J. K., Moore, J. B., & Tabak, R. G. (2018). Research full report: getting the word out: new approaches for disseminating public health science. *Journal of public health management and practice*, *24*(2), 102.
- Trivedi, K. K., & Pollack, L. A. (2014). The role of public health in antimicrobial stewardship in healthcare. *Clinical Infectious Diseases*, 59(suppl_3), S101-S103.
- 6. WongLaura, E., HawkinsJessica, E., & MurrellKaren, L. (2020). Where are all the

patients? Addressing Covid-19 fear to encourage sick patients to seek emergency care. *NEJM Catalyst Innovations in Care Delivery*.

- Gostin, L. O., & Wiley, L. F. (2016). *Public* health law: power, duty, restraint. Univ of California Press.
- Balanzá–Martínez, V., Atienza–Carbonell, B., Kapczinski, F., & De Boni, R. B. (2020). Lifestyle behaviours during the COVID-19– time to connect.
- Murray, V., Aitsi-Selmi, A., & Blanchard, K. (2015). The role of public health within the United Nations post-2015 framework for disaster risk reduction. *International Journal of Disaster Risk Science*, 6(1), 28-37.
- 10. Glanz, K., Rimer, B. K., & Viswanath, K. (Eds.). (2008). *Health behavior and health education: theory, research, and practice.* John Wiley & Sons.
- 11. Eaton, D. L., & Gilbert, S. G. (2008). Principles of toxicology. *Casarett & Doull's toxicology: The basic science of poisons*, 11-43.
- Burden, N., Sewell, F., Andersen, M. E., Boobis, A., Chipman, J. K., Cronin, M. T., ... & Whelan, M. (2015). Adverse outcome pathways can drive non-animal approaches for safety assessment. *Journal of Applied Toxicology*, *35*(9), 971-975.
- Rand, G. M., Wells, P. G., & McCarty, L. S. (2020). Introduction to aquatic toxicology. In *Fundamentals of aquatic toxicology* (pp. 3-67). CRC Press.
- 14. Hartung, T. (2011). From alternative methods to a new toxicology. *European journal of pharmaceutics and biopharmaceutics*, 77(3), 338-349.
- Gundert-Remy, U., Barth, H., Bürkle, A., Degen, G. H., & Landsiedel, R. (2015). Toxicology: a discipline in need of academic anchoring—the point of view of the German Society of Toxicology. *Archives of toxicology*, *89*(10), 1881-1893.
- 16. Timbrell, J. (2001). *Introduction to toxicology*. CRC Press.
- 17. Wright, D. A., & Welbourn, P. (2002). *Environmental toxicology* (Vol. 11). Cambridge University Press.

- 18. Derelanko, M. J., & Auletta, C. S. (Eds.). (2014). *Handbook of toxicology*. CRC press.
- 19. Hodgson, E. (Ed.). (2004). A textbook of modern toxicology. John Wiley & Sons.
- 20. Vincent, E. N., & Yusuf, S. D. (2014). Integrating renewable energy and smart grid technology into the Nigerian electricity grid system. *Smart Grid and Renewable Energy*, 2014.
- 21. Oyedepo, S. O. (2013). Energy in perspective of sustainable development in Nigeria. *Sustainable Energy*, *1*(2), 14-25.
- Saka, A. B., Olawumi, T. O., & Omoboye, A. J. (2017). Solar photovoltaic system: a case study of akure, Nigeria. *World Scientific News*, *83*, 15-28.
- 23. Otasowie, P. O., & Ezomo, P. I. (2015). Life cycle cost analysis for the economic viability for solar and national grid for powering BTS. *Journal of Energy Technologies and Policy*, *5*(3).
- Jimah, K. Q., Isah, A. W., & Okundamiya, M. S. (2019). Erratic and epileptic power supply in Nigeria: Causes and Solutions. *Advances in Electrical and Telecommunication Engineering (AETE) ISSN:* 2636-7416, 2(1), 47-53.
- Oji, J. O., Idusuyi, N., Aliu, T. O., Petinrin, M. O., Odejobi, O. A., & Adetunji, A. R. (2012). Utilization of solar energy for power generation in Nigeria. *International Journal of Energy Engineering*, 2(2), 54-59.

- 26. Aderemi, A. O., Ilori, M. O., Aderemi, H. O., & Akinbami, J. F. K. (2009). Assessment of electrical energy use efficiency in Nigeria food industry. *African Journal of Food Science*, *3*(8), 206-216.
- Onochie, U. P., Egware, H. O., & Eyakwanor, T. O. (2015). The Nigeria electric power sector (opportunities and challenges). *Journal* of *Multidisciplinary Engineering Science and Technology*, 2(4), 494-502.
- Huggins, F. E., Huffman, G. P., Linak, W. P., & Miller, C. A. (2004). Quantifying hazardous species in particulate matter derived from fossil-fuel combustion. *Environmental science* & technology, 38(6), 1836-1842.
- 29. Wilson, A. D. (2012). Review of electronicnose technologies and algorithms to detect hazardous chemicals in the environment. *Procedia Technology*, *1*, 453-463.
- 30. Perera, F. (2018). Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. *International journal of environmental research and public health*, *15*(1), 16.