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Abstract— In this paper, strict complimentary root-based 

iterative solution to the Kepler’s equation for satellite with 

elliptical or circular orbits is presented. Specifically, the 

approach is used to determine the eccentricity anomaly (E) 

of the orbit for a given set of values of orbital eccentricity 

(e) and mean anomaly (M). The performance of the Strict 

Complementary Root Seeded Secant (SCRSS) Method in 

computing the eccentricity anomaly of the elliptical or 

circular orbits is compared with that of fixed point iteration 

(FPI) method. Both the SCRSS method and the FPI method 

utilised a single initial guess value of E which in this paper 

is estimated using a piecewise function which specified the 

initial guess values for three different range of values of M. 

The computation of E was implemented with Matlab 

software. The results of the computation for e = 0.095 and 

M =15° with error tolerance of ε ≤ 10−15  show that the 

FPI converged after 11 cycles whereas the SCRSS 

converged after 3 cycles. Similarly, the results of the 

computation for e = 0.095 and M =45° show that the FPI 

converged after 10 cycles whereas the SCRSS converged 

after 3 cycles. Furthermore, the results of the computation 

of E for e = 0.095 and values of M ranging from 5° to 75° 

show that the convergence cycle for the SCRSS  algorithm 

is 3 while that of the FPI algorithm varied from 6 at M =75° 

to 13 at M = 5°. Again, the results of the computation of E 

for e = 0.995 and values of M ranging from 5° to 75° show 

that the convergence cycle for the SCRSS  algorithm is 4 

while that of the FPI algorithm varied from 50 at M =75° to 

71 at M = 5°. In all, the SCRSS algorithm converges much 

faster than the FPI algorithm. 
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1.  Introduction 

Over the years, solution of Kepler’s equation applicable to 

different types of satellite orbits has attracted much 

researches [1,2,3,4,5,6,7,8,9,10]. Mostly, iterative solution 

approaches are adopted due to the transcendental nature of 

the equation when the desired parameter is the eccentricity 

anomaly (E) as a function of the orbit eccentricity (e) and 

orbit mean anomaly (M) [11,12,13,14,15,16,17,18,19,20]. 

Again, the fixed point iteration (FPI) has also been widely 

adopted for this equation due to the FPI method and the fact 

that only a single initial value is required to perform the FPI 

algorithm.  

However, in many case, the convergence of the FPI method 

is very poor, hence it requires several iterations before the 

desired value of E with the requisite accuracy level is 

attained [21,22,23,24,25,26]. As such, researchers has 

resorted to other seeded iteration methods that requires only 

single initial value for E but with much better convergence 

performance than the FPI method. According, in this paper, 

a Strict Complementary Root Seeded Secant (SCRSS) 

Method is presented and compared with the FPI method 

[27,28,29]. The SCRSS method requires a single initial 

guess value for E but converges faster than the FPI method. 

Furthermore, in order to further improve on the 

convergence performance of the iteration methods, a good 

initial guess value of E is required. As such, in this paper, a 

piecewise function which specified the initial guess values 

of E for three different range of values of M is adopted. 

Finally, the convergence performance of the FPI method 

and that of the SCRSS method are determined and 

compared using some numerical examples. 

 

2. Methodology 

The Kepler’s equation for eccentricity anomaly, E is 

expressed in terms of the orbital eccentricity and the mean 

anomaly as follows; 

𝐸 = 𝑀 + 𝑒(𝑆𝑖𝑛(𝐸))  (1) 

In order to solve the transcendental Kepler’s equation for E, 

iterative solution is usually adopted. In this paper, three 

different iterative approaches are presented, each with the 

initial guess value of E denoted as 𝐸0 and as expressed by 

[30], where; 

𝐸0 =

{
 
 

 
 
𝑀 + ((6𝑀)1/3 −𝑀)𝑒2                           𝑓𝑜𝑟 0 ≤ 𝑀 ≤ 0.25

𝑀 + 𝑒 (
sin (𝑀)

1−𝑆𝑖𝑛(𝑀+𝑒)+𝑆𝑖𝑛(𝑀)
)                    𝑓𝑜𝑟  0.25 ≤ 𝑀 ≤ 2

𝑀 + 𝑒 (
𝑒(sin (𝑀))

√(1−2𝑒𝐶𝑜𝑠(𝑀)+𝑒2)
)                      𝑓𝑜𝑟 2 ≤ 𝑀 ≤ 𝜋

  (2) 

The subsequent values of E are determined through 

iterative approach with a termination error tolerance, ∈. The 

three iterative solutions considered in this paper are: 

classical secant method, onetime complementary root 

seeded secant method and strict complementary root seeded 

secant method.  

2.1  The Fixed Point Method 

For the fixed point method, one initial guess value of E is 

required. Let the single initial guess value of E be denoted 

as 𝐸0  where its value is as define by [30]. Hence, the 

analytical procedure for defining the fixed iteration method 

is given as follows;  

At the initial cycle, x = 0, then; 
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𝐸𝑥 = 𝐸0 =

{
 
 

 
 
𝑀 + ((6𝑀)1/3 −𝑀)𝑒2                           𝑓𝑜𝑟 0 ≤ 𝑀 ≤ 0.25

𝑀 + 𝑒 (
sin (𝑀)

1−𝑆𝑖𝑛(𝑀+𝑒)+𝑆𝑖𝑛(𝑀)
)                    𝑓𝑜𝑟  0.25 ≤ 𝑀 ≤ 2

𝑀 + 𝑒 (
𝑒(sin (𝑀))

√(1−2𝑒𝐶𝑜𝑠(𝑀)+𝑒2)
)                  𝑓𝑜𝑟 2 ≤ 𝑀 ≤ 𝜋

  (3) 

𝐸𝑥+1  = 𝑀 + 𝑒(𝑆𝑖𝑛(𝐸𝑥))        (4) 

𝑓(𝐸𝑥)   = 𝐸𝑥 − 𝐸𝑥+1 (5) 

If 𝑓(𝐸𝑥 )  ≤ ∈  then stop otherwise x =x +1 and then repeat 

the cycle by calculating 𝐸𝑥+1    and 𝑓(𝐸𝑥)  and checking the 

termination condition  𝑓(𝐸𝑥 )  ≤ ∈ .  The fixed iteration 

algorithm for the computation of E based on the given 

initial value  of  𝐸0  and estimation error, ∈ is as follows; 

Step 1: Input M, e , ∈ 

Step 2 : x=0 

Step 3 :  

𝐸𝑥 =

{
 
 

 
 

𝑀 + ((6𝑀)1/3 −𝑀)𝑒2               𝑓𝑜𝑟 0 ≤ 𝑀 ≤ 0.25

𝑀 + 𝑒 (
sin (𝑀)

1 − 𝑆𝑖𝑛(𝑀 + 𝑒) + 𝑆𝑖𝑛(𝑀)
)     𝑓𝑜𝑟  0.25 ≤ 𝑀 ≤ 2

𝑀 + 𝑒 (
𝑒(sin (𝑀))

√(1 − 2𝑒𝐶𝑜𝑠(𝑀) + 𝑒2)
)      𝑓𝑜𝑟 2 ≤ 𝑀 ≤ 𝜋

 

Step 4 : 𝐸𝑥+1  = 𝑀 + 𝑒(𝑆𝑖𝑛(𝐸𝑥)) 

Step 5 : 𝑓(𝐸𝑥)   = 𝐸𝑥 − (𝑀 + 𝑒(𝑆𝑖𝑛(𝐸𝑥))) 

Step 6 : If 𝑓(𝐸𝑥 )  ≤ ∈  then goto step 8  else x = x +1; 

  goto step 4 

Step 8 :  Output  𝐸𝑥+1  

Step 9 :  End 

 

2.2  Strict Complementary Root Seeded Secant Method  

The strict complementary root seeded secant method is 

defined as follows; at x=0 

𝐸0 =

{
 
 

 
 𝑀 + ((6𝑀)1/3 −𝑀)𝑒2                           𝑓𝑜𝑟 0 ≤ 𝑀 ≤ 0.25

𝑀 + 𝑒 (
sin (𝑀)

1−𝑆𝑖𝑛(𝑀+𝑒)+𝑆𝑖𝑛(𝑀)
)                    𝑓𝑜𝑟  0.25 ≤ 𝑀 ≤ 2

𝑀 + 𝑒 (
𝑒(sin (𝑀))

√(1−2𝑒𝐶𝑜𝑠(𝑀)+𝑒2)
)                  𝑓𝑜𝑟 2 ≤ 𝑀 ≤ 𝜋

  (3) 

𝐸𝑥+1  = 𝑀 + 𝑒(𝑆𝑖𝑛(𝐸𝑥))        (4) 

𝑓(𝐸𝑥)   = 𝐸𝑥 − 𝐸𝑥+1     (5) 

𝑓(𝐸𝑥+1)   = 𝐸𝑥+1 − (𝑀 + 𝑒(𝑆𝑖𝑛(𝐸𝑥+1)))     (6) 

𝐸𝑥+2  =
𝐸𝑥(𝑓(𝐸𝑥+1))−𝐸𝑥+1(𝑓(𝐸𝑥))

𝑓(𝐸𝑥+1)−𝑓(𝐸𝑥)
     (7) 

𝑓(𝐸𝑥+2 )   = 𝐸𝑥+2  − (𝑀 + 𝑒(𝑆𝑖𝑛(𝐸𝑥+2 )))     (8) 

If 𝑓(𝐸𝑥+2 )  ≤ ∈  then stop otherwise x =x +1 , 𝐸𝑥 =
𝐸𝑥+1 and then repeat the cycle by calculating 𝐸𝑥+1,  𝑓(𝐸𝑥)  , 
𝑓(𝐸𝑥+1) , 𝐸𝑥+2,  𝑓(𝐸𝑥+2 )  and checking the termination 

condition  𝑓(𝐸𝑥+2 )  ≤ ∈ .   The strict complementary root 

seeded secant algorithm for the computation of E based on 

the given single initial value of  𝐸𝑥  and estimation error, ∈
 is as follows; 

 

Step 1: Input M, e , ∈ 

Step 2 : x=0 

Step 3 : 

𝐸0 =

{
 
 

 
 
𝑀 + ((6𝑀)1/3 −𝑀)𝑒2                           𝑓𝑜𝑟 0 ≤ 𝑀 ≤ 0.25

𝑀 + 𝑒 (
sin (𝑀)

1−𝑆𝑖𝑛(𝑀+𝑒)+𝑆𝑖𝑛(𝑀)
)                    𝑓𝑜𝑟  0.25 ≤ 𝑀 ≤ 2

𝑀 + 𝑒 (
𝑒(sin (𝑀))

√(1−2𝑒𝐶𝑜𝑠(𝑀)+𝑒2)
)                      𝑓𝑜𝑟 2 ≤ 𝑀 ≤ 𝜋

    

Step 4 : 

𝐸𝑥+1  = 𝑀 + 𝑒(𝑆𝑖𝑛(𝐸𝑥)) 

Step 5 : 𝑓(𝐸𝑥)   = 𝐸𝑥 − 𝐸𝑥+1 

Step 6 : 𝑓(𝐸𝑥+1)   = 𝐸𝑥+1 − (𝑀 + 𝑒(𝑆𝑖𝑛(𝐸𝑥+1))) 

Step 7 : 𝐸𝑥+2  =
𝐸𝑥(𝑓(𝐸𝑥+1))−𝐸𝑥+1(𝑓(𝐸𝑥))

𝑓(𝐸𝑥+1)−𝑓(𝐸𝑥)
 

Step 8 : 

𝑓(𝐸𝑥+2 )   = 𝐸𝑥+2  − (𝑀 + 𝑒(𝑆𝑖𝑛(𝐸𝑥+2 ))) 

Step 9 : 

If 𝑓(𝐸𝑥+2 )  ≤ ∈  then goto step 10  else x = x +1; 𝐸𝑥 =
𝐸𝑥+1 goto step 4 

Step 10 :  Output  𝐸𝑥+2 

Step 11 :  End 

 

3.  RESULTS AND DISCUSSION 

The computation of E based on Kepler’s equation was 

implemented with Matlab software. The results of the 

computation using the fixed point iteration (FPI) method 

for e = 0.095 and M =15° with error tolerance of ε ≤ 10−15  

are presented in Table 1  while Table 2 is the result of  

Strict Complementary Root Seeded Secant (SCRSS) 

Method for e = 0.095 and M =15° with error tolerance of 

ε ≤ 10−15  . The results show that the FPI converged after 

11 cycles whereas  the SCRSS converged after 3 cycles. 

Similarly, the results of the computation using the fixed 

point iteration (FPI) method for e = 0.095 and M =45° with 

error tolerance of ε  ≤ 10−15   are presented in Table 3  

while Table 4 is the result of  Strict Complementary Root 

Seeded Secant (SCRSS) Method for e = 0.095 and M =45° 

with error tolerance of ε ≤ 10−15  . The results show that 

the FPI converged after 10 cycles whereas the SCRSS 

converged after 3 cycles. 

The convergence performance of the two algorithms is 

demonstrated be computing the value of E for a given e and 

various values of M. Specifically, the results of the 

computation of E for e = 0.095 and values of M ranging 

from 5° to 75° are given in Table 5 and Figure 1.  The 

results show that for the given range of values of M, the 

convergence cycle for the SCRSS  algorithm is 3 while that 

of the FPI algorithm varied from 6 at M =75° to 13 at M = 

5°. 

Again, the results of the computation of E for e = 0.995 and 

values of M ranging from 5° to 75° are given in Table 6 and 

Figure 2.  The results show that for the given range of 

values of M, the convergence cycle for the SCRSS  

algorithm is 4 while that of the FPI algorithm varied from 

50 at M =75° to 71 at M = 5°. In all, the SCRSS algorithm 

converges much faster than the FPI algorithm. 
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Table 1   Result of the fixed point iteration (FPI) method for e = 0.095 and M =15° with error tolerance of ε ≤ 10−15   

 

E = 0.095 M =15° M =0.261799 radians  

 

Eo =16.54888682° Eo = 0.288833 radians 

 Cycle x Ex f(Ex) Ex+1 

1 2.888326E-01 -2.60E-05 2.888586E-01 

2 2.888586E-01 -2.37E-06 2.888609E-01 

3 2.888609E-01 -2.16E-07 2.888611E-01 

4 2.888611E-01 -1.96E-08 2.888612E-01 

5 2.888612E-01 -1.79E-09 2.888612E-01 

6 2.888612E-01 -1.63E-10 2.888612E-01 

7 2.888612E-01 -1.48E-11 2.888612E-01 

8 2.888612E-01 -1.35E-12 2.888612E-01 

9 2.888612E-01 -1.23E-13 2.888612E-01 

10 2.888612E-01 -1.12E-14 2.888612E-01 

11 2.888612E-01 -9.99E-16 2.888612E-01 

12 2.888612E-01 0.00E+00 2.888612E-01 

 

 

 

Table 2   Result of the Strict Complementary Root Seeded Secant (SCRSS) Method for e = 0.095 and M =15° 

 

E = 0.095 M  = 15° 

M = 

0.261799 

radians Eo =16.54888682° 

Eo = 0.288833 

radians   

Cycle x Ex f(Ex) Ex+1 f(Ex+1) Ex+2 f(Ex+2) 

1 2.888326E-01 -2.60E-05 2.888586E-01 2.89E-01 2.888612E-01 1.01E-12 

2 2.888612E-01 1.01E-12 2.888612E-01 2.89E-01 2.888612E-01 0.00E+00 

3 2.888612E-01 0.00E+00 2.888612E-01 2.89E-01     

 

 

 

Table 3   Result of the fixed point iteration (FPI) method for  e = 0.095 and  M = 45° 

 

E = 0.095 M = 45° M = 0.785398radians   

 

Eo  =49.11151967 ° Eo = 0.857158 radians   

Cycle x Ex f(Ex) Ex+1 

1 8.571577E-01 -5.90E-05 8.572167E-01 

2 8.572167E-01 -3.67E-06 8.572204E-01 

3 8.572204E-01 -2.28E-07 8.572206E-01 

4 8.572206E-01 -1.42E-08 8.572207E-01 

5 8.572207E-01 -8.83E-10 8.572207E-01 

6 8.572207E-01 -5.49E-11 8.572207E-01 

7 8.572207E-01 -3.41E-12 8.572207E-01 

8 8.572207E-01 -2.12E-13 8.572207E-01 

9 8.572207E-01 -1.31E-14 8.572207E-01 

10 8.572207E-01 -8.88E-16 8.572207E-01 

11 8.572207E-01 0.00E+00 8.572207E-01 
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Table 4  Result of the Strict Complementary Root Seeded Secant (SCRSS) Method for e = 0.095 and M =45° 

 

E = 

0.095 

 

M  = 45° 

M  =0.785398 

radians 

Eo  = 49.11151967 

° 

Eo = 0.857158 

radians   

Cycle x  Ex f(Ex) Ex+1 f(Ex+1) Ex+2 f(Ex+2) 

1  8.571577E-01 -5.90E-05 8.572167E-01 8.57E-01 8.572207E-01 8.85E-12 

2  8.572207E-01 8.85E-12 8.572207E-01 8.57E-01 8.572207E-01 0.00E+00 

3  8.572207E-01 0.00E+00 8.572207E-01 8.57E-01 #DIV/0! #DIV/0! 

 

 
Table 5  Convergence Cycle (n) for the cases where  e = 0.095 

 

e 
M in 

degrees 
Eo in 

degree 
Ein 

degrees 

Convergence 
Cycle (n) for 
FPI Method 

Convergence 
Cycle (n) for 

SCRSS  
Method 

P% 
Reduction in 
convergence 

cycle 

0.095 5 5.371651 5.524 13 3 76.9 

0.095 15 16.54889 16.5505 11 3 72.7 

0.095 25 27.51148 27.5146 11 3 72.7 

0.095 45 49.11152 49.1151 10 3 70.0 

0.095 55 59.69693 59.6995 9 3 66.7 

0.095 75 80.366 80.3663 6 3 50.0 

Average 10 3 70.0 

 

 
 

Figure 1   Convergence Cycle (n) for the cases where e = 0.095 
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Table 6  Convergence Cycle (n) for the cases where e = 0.995 

 

e 
M in 

degrees 
Eo in 

degree 
Ein 

degrees 

Convergence 
Cycle (n) for 
FPI Method 

Convergence 
Cycle (n) for 

SCRSS  
Method 

P% 
Reduction in 
convergence 

cycle 

0.995 5 45.7694 46.0293 71 4 94.4 

0.995 15 62.95092 67.7731 32 5 84.4 

0.995 25 80.72897 81.3628 16 4 75.0 

0.995 45 100.2977 100.968 18 4 77.8 

0.995 55 107.3518 108.927 27 4 85.2 

0.995 75 120.03 122.878 50 4 92.0 

Average 35.7 4.2 88.3 

 

 

 
Figure 2   Convergence Cycle (n) for the cases where e = 0.995 

 

 

4.0  CONCLUSION 

A seeded secant approach for computing the eccentricity 

anomaly for satellites with elliptical or circular orbits is 

presented. The approach used complementary-root form of 

the Kepler’s equation in similar way are is applicable to the 

popular fixed iteration method. Hence, the convergence 

performance of the Strict Complementary Root Seeded 

Secant (SCRSS) Method is compared with that of the fixed 

point iteration (FPI) method. In all, the  results showed that 

in the computation of the eccentricity anomaly for elliptical 

and circular orbits, the SCRSS method converged much 

faster than the FPI method in all the cases considered. 
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