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Abstract—In this paper, evaluation of solution to 

nonlinear equation using onetime complementary root-

based seeded secant iteration method   is presented. The 

onetime complementary root-based secant iteration 

relies on using one initial guess root in a complementary 

root form of a function to generate the two initial guess 

roots required by the secant method. By this method, a 

single initial guess root is required to apply the secant 

method rather than then two initial guess roots as 

required by the conventional secant iteration method. A 

numerical example for the root of a case study nonlinear 

function, 𝐟(𝐱)   =  𝐱𝟔 − 𝟐𝐱 − 𝟏 = 𝟎 was solved using the

onetime complementary root-based seeded secant 

algorithm implemented in Mathlab software with 

𝝐 = 𝟏𝟎−𝟒 = 𝟎. 𝟎𝟎𝟎𝟏. The result of the iterative solution

for with initial guess root value,   𝒙𝟎  = 1   gave

complementary root,  𝐠(𝒙𝟎)  =  0 and it took 5 cycles for

the algorithm to converge to the actual root of -

0.49283556. Generally, the results show that the closer 

the initial root is to the actual root, the smaller is the 

convergence cycle. For instance, 𝒙𝟎 =4 and 𝒙𝟎 =2 gave

the same root value of 1.229810149 but it took 14 cycles 

for the case of 𝒙𝟎 =4 to converge whereas it took 9

cycles for the case of 𝒙𝟎 = 2 to converge. Similarly,

𝒙𝟎 = 1 and 𝒙𝟎 = 0.75 gave the same root value of -
0.49283556 but it took 5 cycles for the case of 𝒙𝟎 =1 to

converge whereas it took 2 cycles for the case of 

𝒙𝟎 =0.75 to converge. 
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1. INTRODUCTION

Iterative root finding methods are numerous and 

they have been widely used in the solutions to 

nonlinear and transcendental equations 

[1,2,3,4,5,6,7,8,9]. Each of the different iterative 

methods has its merits and demerits 

[10,11,12,131,14,15,16,17,18]. However, 

researchers continue to develop more methods 

that that are targeted to different kinds of 

equations or methods that satisfy different 

performance measures. In this paper, 

complementary root-based seeded secant 

approach is presented. The complementary root is 

used to use one initial guess root to generate the 

second initial root required for secant iteration. 

Hence, in the complementary root-based seeded 

secant, the classical secant method 

[19,20,21,22,23] is adapted to operate with a 

single initial guess root. Specifically, the 

complementary root mechanism is implemented 

first; it takes a single initial guess root value, 𝑥0

and generates the second guess root, 𝑥1 which in

this case is a complementary root of the guess 

root, g(𝑥0), that is  𝑥1 = g(𝑥0). The two roots, 𝑥0

and 𝑥1 are then used iteratively in the classical

secant iteration method to determine the actual 

root of the function , f(x).  In practice, the 

complementary root mechanism is adapted from 

the fixed point iteration method [24,25,26,27,28]. 

Basically, the onetime complementary root-based 

seeded secant iteration method is a form of secant 

iteration method that uses algorithm similar to the 

fixed point iteration to find the initial two guess 

roots required by the secant method. After the 

application of the fixed-point-like mechanism 

once, the secant method is then repeatedly 

applied until the actual root is determined. The 

convergence cycle performance of the iteration 

scheme is examined in this paper by using some 

numerical examples. Also, the relevant 

mathematical procedure and algorithm for the 

iteration scheme are presented. 

2 . METHODOLOGY: DEVELOPMENT OF 

THE ALGORITHM FOR THE 

ONETIME COMPLEMENTARY 

ROOT-BASED SEEDED SECANT 

The onetime complementary root-based secant 

iteration relies on using one initial guess root in a 

complementary root form of a function to 

generate the two initial guess roots required by 
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the secant method. By this method, a single initial 

guess root is required to apply the secant method 

rather than then two initial guess roots as required 

by the conventional secant iteration method. The 

method is explained in this paper using a 

nonlinear function of x. Given a nonlinear 

function , f(x) where;  

f(x)   =  x6 − 2x − 1 = 0  (1) 

Express the function in the complementary root 

form  as follows; 

2𝑥 =  x6 − 1  (2) 

Hence 

x  =
 x6−1

2
  (3) 

g(x)   =
 x6−1

2
  (4) 

 

The complementary root form of f(x)  is denoted 

as f̂(x)such that  

f̂(x) = 𝑥 − 𝑔(𝑥)  = 𝑥 − (
 𝑥6−1

2
)  (5) 

A single value of x is selected to compute g(x)  

and f̂(x) . If f̂(x)  ≠ 0 then the root of f(x) has not 

been found. At this point, if the present iteration 

cycle number is j, then the secant iteration 

formula for the next guess root, 𝑥j+1  is computed 

from the values of  x and g(x)as follows: 

𝑥j−1  = 𝑥  (6) 

𝑥j  = g(x)  (7) 

f(𝑥j−1) =   (𝑥j−1)
6

− 2(𝑥j−1) − 1   (8) 

f(𝑥j) =   (𝑥j)
6

− 2(𝑥j) − 1   (9) 

 

𝑥j+1  =
(𝑥j−1)f(𝑥j)−(𝑥j)f(𝑥j−1) 

 f(𝑥j)−f(𝑥j−1)  
  (10) 

Then compute the following; 

f(𝑥j+1) =   (𝑥j+1)
6

− 2(𝑥j+1) − 1   (11) 

f̂(𝑥j+1) = 𝑥j+1 − (
 (𝑥j−1)

6
−1

2
)  (12) 

Assuming a tolerance error of 𝜖 is specified, then 

if  [f(𝑥j+1)  ≤  𝜖]  the root is 𝑥j+1  otherwise  j 

=j+1 , 𝑥j−1  = 𝑥j  , 𝑥j   = 𝑥j+1   and the secant 

iteration is repeated until [f(𝑥j+1)  ≤  𝜖] . Also, 

[f̂(𝑥j+1)  ≤  𝜖]  can be used to determine the 

termination point for the iteration. 

 

A numerical example for finding the root of the 

function f(x)   =  x6 − 2x − 1 = 0  with the 

value of  𝜖 = 10−4 = 0.0001 is presented next. 

Let the initial guess root value,   𝑥0   = 1   and  

g(𝑥0 )  =
 16−1

2
 = 0 . So, for j =1 

𝑥j−1  = 𝑥0    = 1 

𝑥j  = 𝑥1  = g(𝑥0 ) = 0 

f(𝑥0) =  f(1)   =  16 − 2(1) − 1 = −2 

f(𝑥1) =  f(0)   =  06 − 2(0) − 1 = −1 

 

𝑥j+1  = 𝑥2  =
[(𝑥0)f(𝑥1)] − [(𝑥1)f(𝑥0)] 

 f(𝑥1) − f(𝑥0)  

=
[(1)(−1)] − [(0)(−2)]  

−1 − (−2) 
 = −1 

Then compute, 

f(𝑥2) = f(−1) = (−1)6 − 2(−1) − 1 

= 1 + 2 − 1 = 2 

Since f(𝑥2) = 2 >  0.0001 , the secant iteration 

is repeated with the following values; j =j+1, 

𝑥j−1  = 𝑥j  , 𝑥j   = 𝑥j+1   until f(𝑥2) ≤ 𝜖.  The 

detailed algorithm for iterative computation  of 

the actual root,  𝑥ac   of the function f(x) based on 

the onetime complementary root-based seeded 

secant approach is given as follows; 

 

Step 1   Input initial guess root,  𝒙𝟎 

Step 2   Compute the complementary root of 𝒙𝟎,   𝒙𝟏 =  𝐠(𝒙𝟎) 

Step 3   Initialize cycle counter to 1; j =1 

Step 4   Compute  𝐟(𝒙𝟎(𝐣)) =   (𝒙𝟎(𝐣))
𝟔

− 𝟐(𝒙𝟎(𝐣)) − 𝟏 

Step 5   Compute   𝐟(𝒙𝟏(𝐣)) =   (𝒙𝟏(𝐣))
𝟔

− 𝟐(𝒙𝟏(𝐣)) − 𝟏 

Step 6   Compute by secant approach the next guess root, 𝒙𝟐   where 
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𝒙𝟐(𝐣)  =  
[(𝒙𝟎(𝐣))𝐟(𝒙𝟏(𝐣))] − [(𝒙𝟏(𝐣))𝐟(𝒙𝟎(𝐣))] 

 𝐟(𝒙𝟏(𝐣)) − 𝐟(𝒙𝟎(𝐣))  
 

Step 7    Compute 𝒇(𝒙𝟐(𝐣))  

Step 8   If  ( | 𝒇(𝒙𝟐(𝐣)) |  ≤  ∈ ) then 𝒙𝐚𝐜 = 𝒙𝟐(𝐣) ; goto step 10   

Step 9   If  ( | 𝒇(𝒙𝟐(𝐣)) |  >  ∈ ) 𝐭𝐡𝐞𝐧 

𝐣 = 𝟏 + 𝟏 

𝒙𝟎(𝐣) = 𝒙𝟏(𝐣−𝟏) 

𝒙𝟏(𝐣) = 𝒙𝟐(𝐣−𝟏) 

𝐆𝐨𝐭𝐨 𝐬𝐭𝐞𝐩 𝟒 

endif 

Step 10     Output 𝒙𝐚𝐜 

Step 11     End 
 

3. RESULTS AND DISCUSSION 

The numerical example for the root of the 

nonlinear function f(x)   =  x6 − 2x − 1 = 0  is 

solved using the onetime complementary root-

based seeded secant algorithm implemented in 

Mathlab software with 𝜖 = 10−4 = 0.0001. The 

result of the iterative solution for the root of 

f(x)   =  x6 − 2x − 1 = 0  with initial guess root 

value,   𝑥0 = 1   which gives    g(𝑥0)  =  0 is 

presented in Table 1. The results showed that it 

took 5 cycles for f (𝑥2(j)) < 𝜖 = 10−4 . The 

results for  𝑥0 = 4   in Table 2 showed that it took 

15 cycles for f(𝑥2(j)) < 𝜖 = 10−4. 

The simulation results for other values of 𝑥0 are 

shown in Table 3, Table 4, and Table 5 while 

Table 6 shows the summary of the results for all 

the five test cases in Table 1, Table 2, Table 3, 

Table 4, and  Table 5. The results in Table 6 show 

that different initial guess roots gave different 

convergence cycles and in some cases different 

actual root of the function. However, the results 

show that the closer the initial root is to the actual 

root, the smaller is the convergence cycle. For 

instance, 𝑥0 =4 and 𝑥0 =2 gave the same root 

value of 1.229810149 but it took 14 cycles for the 

case of 𝑥0 = 4 to converge whereas it took 9 

cycles for the case of 𝑥0 = 2 to converge. 

Similarly, 𝑥0 = 1 and 𝑥0 = 0.75 gave the same 

root value of -0.49283556 but it took 5 cycles for the 

case of 𝑥0 = 1 to converge whereas it took 2 

cycles for the case of 𝑥0 =0.75 to converge.  

 

 

Table 1  The result of the  iterative solution for the root of f(x)   =  x6 − 2x − 1 = 0  with initial guess 

root value,   𝑥0 = 1   which gives    g(𝑥0)  =  0.  

j 𝑥0(j) 𝑥1(j) f(𝑥0(j)) f(𝑥1(j)) 𝑥2(j) f(𝑥2(j)) 𝑥2(j)  - g(𝑥2(j)) 

0 1 0 -2 -1 -1 2.000E+00 1.000E+00 

1 0 -1 -1 2 -0.333333 -3.320E-01 1.000E+00 

2 -1 -0.333333 2 -0.331962 -0.428235 -1.374E-01 -6.667E-01 

3 -0.333333 -0.428235 -0.331962 -0.137362 -0.495224 5.198E-03 9.490E-02 

4 -0.428235 -0.495224 -0.137362 0.0051982 -0.492781 -1.182E-04 6.699E-02 

5 -0.495224 -0.492781 0.0051982 -0.000118 -0.492836 -1.155E-07 -2.443E-03 

6 -0.492781 -0.492836 -0.000118 -1.16E-07 -0.492836 2.555E-12 5.431E-05 

7 -0.492836 -0.492836 -1.16E-07 2.555E-12 -0.492836 0.000E+00 5.312E-08 
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Table 2  The result of the  iterative solution for the root of f(x)   =  x6 − 2x − 1 = 0  with initial guess 

root value,   𝑥0 = 4   which gives  g(𝑥0)  =  2047.5.  

j 𝑥0(j) 𝑥1(j) f(𝑥0(j)) f(𝑥1(j)) 𝑥2(j) f(𝑥2(j)) 𝑥2(j)  - g(𝑥2(j)) 

0 4 2047.5 4087 7.368E+19 4 4.087E+03 -2.044E+03 

1 2047.5 4 7.368E+19 4087 4 4.087E+03 2.044E+03 

2 4 4 4087 4087 3.332899 1.363E+03 1.137E-13 

3 4 3.332899 4087 1363.0043 2.9991021 7.207E+02 6.671E-01 

4 3.332899 2.9991021 1363.0043 720.69358 2.624571 3.206E+02 3.338E-01 

5 2.9991021 2.624571 720.69358 320.60194 2.3244512 1.521E+02 3.745E-01 

6 2.624571 2.3244512 320.60194 152.08413 2.0535989 6.990E+01 3.001E-01 

7 2.3244512 2.0535989 152.08413 69.898408 1.8232408 3.209E+01 2.709E-01 

8 2.0535989 1.8232408 69.898408 32.087172 1.6277555 1.435E+01 2.304E-01 

9 1.8232408 1.6277555 32.087172 14.345432 1.469692 6.138E+00 1.955E-01 

10 1.6277555 1.469692 14.345432 6.1382353 1.3514749 2.390E+00 1.581E-01 

11 1.469692 1.3514749 6.1382353 2.390285 1.276081 7.657E-01 1.182E-01 

12 1.3514749 1.276081 2.390285 0.7657074 1.2405459 1.637E-01 7.539E-02 

13 1.276081 1.2405459 0.7657074 0.1637353 1.2308803 1.596E-02 3.554E-02 

14 1.2405459 1.2308803 0.1637353 0.0159626 1.2298363 3.886E-04 9.666E-03 

15 1.2308803 1.2298363 0.0159626 0.0003886 1.2298102 9.578E-07 1.044E-03 

16 1.2298363 1.2298102 0.0003886 9.578E-07 1.2298101 5.768E-11 2.605E-05 

 

Table 3 The result of the  iterative solution for the root of f(x)   =  x6 − 2x − 1 = 0  with initial guess 

root value,   𝑥0 = 2   which gives  g(𝑥0)  =  31.5. 

j 𝑥0(j) 𝑥1(j) f(𝑥0(j)) f(𝑥1(j)) 𝑥2(j) f(𝑥2(j)) 𝑥2(j)  - g(𝑥2(j)) 

0 2 31.5 59 976929658 1.9999982 5.900E+01 -2.950E+01 

1 31.5 1.9999982 976929658 58.999661 1.9999964 5.900E+01 2.950E+01 

2 1.9999982 1.9999964 58.999661 58.999323 1.6894716 1.888E+01 1.782E-06 

3 1.9999964 1.6894716 58.999323 18.875468 1.5433914 9.429E+00 3.105E-01 

4 1.6894716 1.5433914 18.875468 9.4294724 1.3975667 3.656E+00 1.461E-01 

5 1.5433914 1.3975667 9.4294724 3.6562205 1.3052154 1.334E+00 1.458E-01 

6 1.3975667 1.3052154 3.6562205 1.3337356 1.2521807 3.504E-01 9.235E-02 

7 1.3052154 1.2521807 1.3337356 0.3504403 1.2332795 5.203E-02 5.303E-02 

8 1.2521807 1.2332795 0.3504403 0.0520341 1.2299836 2.582E-03 1.890E-02 

9 1.2332795 1.2299836 0.0520341 0.002582 1.2298115 2.056E-05 3.296E-03 

10 1.2299836 1.2298115 0.002582 2.056E-05 1.2298101 8.222E-09 1.721E-04 

11 1.2298115 1.2298101 2.056E-05 8.222E-09 1.2298101 2.576E-14 1.381E-06 
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Table 4  The result of the  iterative solution for the root of f(x)   =  x6 − 2x − 1 = 0  with initial guess 

root value,   𝑥0 = 0.75   which gives  g(𝑥0)  =
 16−1

2
 = -0.411011 

j 𝑥0(j) 𝑥1(j) f(𝑥0(j)) f(𝑥1(j)) 𝑥2(j) f(𝑥2(j)) 

𝑥2(j)  - 

g(𝑥2(j)) 

0 0.75 -0.411011 -2.322021 -0.173158 -0.504566 2.563E-02 1.161E+00 

1 -0.411011 -0.504566 -0.173158 0.0256334 -0.492503 -7.239E-04 9.356E-02 

2 -0.504566 -0.492503 0.0256334 -0.000724 -0.492834 -3.548E-06 -1.206E-02 

3 -0.492503 -0.492834 -0.000724 -3.55E-06 -0.492836 4.804E-10 3.313E-04 

4 -0.492834 -0.492836 -3.55E-06 4.804E-10 -0.492836 0.000E+00 1.632E-06 

5 -0.492836 -0.492836 4.804E-10 0 -0.492836 0.000E+00 -2.209E-10 

 

 

 

 

 

 

Table 5  The result of the  iterative solution for the root of f(x)   =  x6 − 2x − 1 = 0  with initial guess 

root value,   𝑥0 = -1   which gives    g(𝑥0) = 0 

j Xj-1 Xj f(Xj-1) f(Xj) Xj+1 f(Xj+1) Xj+1-g(Xj+1) 

0 -1 0 2 -1 -0.333333 -3.320E-01 -1.000E+00 

1 0 -0.333333 -1 -0.331962 -0.498973 1.338E-02 3.333E-01 

2 -0.333333 -0.498973 -0.331962 0.0133801 -0.492556 -6.085E-04 1.656E-01 

3 -0.498973 -0.492556 0.0133801 -0.000609 -0.492835 -1.541E-06 -6.418E-03 

4 -0.492556 -0.492835 -0.000609 -1.54E-06 -0.492836 1.754E-10 2.792E-04 

5 -0.492835 -0.492836 -1.54E-06 1.754E-10 -0.492836 0.000E+00 7.087E-07 

 

Table 6  The summary of the results for all the five test cases in Table 1, Table 2, Table 3, Table 4, and  

Table 5 

 

S/N Result 

Table 

Number 

𝑥0 g(𝑥0) Convergence 

Cycle 
f(𝑥2(j))  Actual Root,  

𝑥ac 

1 Table 1 1 0 5 -1.155E-07 -0.49283556 

2 Table 2 4 2047.5 14 9.578E-07 1.229810149 

3 Table 3 2 31.5. 9 2.056E-05 1.229810149 

4 Table 4 0.75 -0.411011 2 -3.548E-06 -0.49283556 

5 Table 5 -1 0 3 -0.49283556 -0.49283556 

 

4. CONCLUSION 

The solution of nonlinear equation using a 

onetime seeded secant method is presented using 

a numerical example. The detailed algorithm for 

the method is presented. Mathlab software was 

used to implement the algorithm for the sample 

nonlinear function. The solution was evaluated 

with different single initial guess root values and 

the convergence cycles were compare. The results 

show that different initial guess roots gave 

different convergence cycles and in some cases 

different actual root of the function. However, the 

results show that the closer the initial root is to 

the actual root, the smaller is the convergence 

cycle. 

 

 

 

j 𝑥0(j) 𝑥1(j) f(𝑥0(j)) f(𝑥1(j)) 𝑥2(j) f(𝑥2(j)) 𝑥2(j)  - g(𝑥2(j)) 

1 8 131071.5 262127 5.07E+30 8 262127 -1.311E+05 

2 131071.5 8 5.07E+30 262127 8 262127 1.311E+05 

3 8 8 262127 262127 #DIV/0! #DIV/0! 0.000E+00 
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