
Science and Technology Publishing (SCI & TECH)
ISSN: 2632-1017

Vol. 5 Issue 8, August - 2021

www.scitechpub.org
SCITECHP420178 1027

Analysis Of Decimal Floating-Point Algorithms
For Arithmetic Logic Unit

Subhash Kumar Sharma1 Shri Prakash Dubey2 Anil Kumar Mishra3

Department Of Electronics Department Of Physics Department Of Physics
MGPG College, Gorakhpur MGPG College, Gorakhpur MGPG College, Gorakhpur

273001,UP India 273001,UP India 273001 ,UP India
Email: sksharma13@yahoo.co.uk

 Abstract: This paper introduces a new
approach to decimal floating-point which not only
provides the strict results which are necessary for
commercial applications but also meets the
constraints and requirements of the IEEE 854
standard. A hardware implementation of this
arithmetic is in development, and it is expected
that this will significantly accelerate a wide variety
of applications. Keywords: Arithmetic on Decimal
Numbers & Design, Rounding, Precision,
Addition, Subtraction, Multiplication, Division,
Compare, Radix Conversion.

1. Introduction: Many early electronic computers,
such as “The Electronic Numerical Integrator and
Computer” (ENIAC), also used decimal arithmetic
(and sometimes even decimal addressing).
Computers needed at least two arithmetic units (one
for binary address calculations and the other for
decimal computations) and so, in general, there was a
natural tendency to economize and simplify by
providing only binary arithmetic units. The remainder
of this section explains why decimal arithmetic and
hardware are still essential. The variety of decimal
data types in use is introduced, together with a
description of the arithmetic used on these types,
which increasingly needs floating-point.

2.Arithmetic On Decimal Numbers: Traditionally,
calculation with decimal numbers has used exact
arithmetic, where the addition of two numbers uses
the largest scale necessary, and multiplication results
in a number whose scale is the sum of the scales of
the operands (1.25 × 3.42 gives 4.2750, for example).
However, as applications and commercial software
products have become increasingly complex, simple
rational arithmetic of this kind has become
inadequate. Repeated multiplications require
increasingly long scaled integers, often dramatically
slowing calculations as they soon exceed the limits of
any available binary or decimal integer hardware.
Further, even financial calculations need to deal within
an increasingly wide range of values. The manual
tracking of scale over such wide ranges is difficult,
tedious, and very error-prone. The obvious solution to
this is to use a floating-point arithmetic. The use of
floating-point may seem to contradict the
requirements for exact results and preservation of
scales in commercial arithmetic; floating-point is
perceived as being approximate, and normalization

loses scale information. For example, 2.50 can be
stored as 250 × 10−2, allowing immediate addition to
12.25 (stored as 1225 × 10−2) without requiring
shifting. Similarly, after adding 1.23 to 1.27, no
normalization shift to remove the ‘extra’ 0 is needed.

 3.The Decimal Arithmetic Design: The core of
the design is the abstract model of finite numbers. In
order to support the required exact arithmetic on
decimal fractions, these comprise an integer
coefficient together with a conventional sign and
signed integer exponent (the exponent is the negative
of the scale used in scaled-integer designs). The
numerical value of a number is given by (−1) sign ×
coefficient × 10exponent.

3.1 Commercial Rounding: The extra rounding
mode is called round-half-up, which is a requirement
for many financial calculations (especially for tax
purposes and in Europe). In this mode, if the digits
discarded during rounding represent greater than or
equal to half (0.5) of the value of a one in the next left
position then the result should be rounded up.
Otherwise the discarded digits are ignored. This is in
contrast to round-half-even, the default IEEE 854
rounding mode, where if the discarded digits are
exactly half of the next digit then the least significant
digit of the result will be even. It is also recommended
that implementations offer two further rounding
modes: round-half-down (where a 0.5 case is rounded
down) and round-up (round away from zero).

3.2 Precision: The working precision setting in the
context is a positive integer which sets the maximum
number of significant digits that can result from an
arithmetic operation. In the case of software (which
may well support unlimited precision), this lets the
programmer set the precision and hence limit
computation costs. For example, if a daily interest rate
multiplier, R, is 1.000171 (0.0171%, or roughly 6.4%
per annum), then the exact calculation of the yearly
rate in a non-leap year is R365. To calculate this to
give an exact result needs 2191 digits, whereas a
much shorter result which is correct to within one unit
in the last place (ulp) will almost always be sufficient
and could be calculated very much faster. In the case
of hardware, precision control has little effect on
performance, but allows the hardware to be used for
calculations of a different precision from the available
‘natural’ register size.

Science and Technology Publishing (SCI & TECH)
ISSN: 2632-1017

Vol. 5 Issue 8, August - 2021

www.scitechpub.org
SCITECHP420178 1028

 3.3 Arithmetic Rules: The design which permits
both integer and floating-point arithmetic to be carried
out in the same processing unit, with obvious
economies in either hardware or a software
implementation. The ability to handle integers as
easily as fractions avoids conversions (such as when
multiplying a cost by a number of units) and permits
the scale (type) of numbers to be preserved when
necessary. Also, since the coefficient is a ‘right-
aligned’ integer, conversions to and from other integer
representations (such as BCD or binary) are
simplified. To achieve the necessary results, every
operation is carried out as though an infinitely precise
mathematical result is first computed, using integer
arithmetic on the coefficient where possible.
Rounding, the processing of overflow and underflow
conditions and the production of subnormal results are
defined in IEEE 854. The following subsections
describe the required operators (including some not
defined in IEEE 854), and detail the rules by which
their initial result (before any rounding) is calculated.
The notation {sign, coefficient, exponent} is used here
for the numbers in examples. All three parameters are
integers, with the third being a signed integer.

3.4 Addition and Subtraction: If the exponents of
the operands differ, then their coefficients are first
aligned; the operand with the larger exponent has its
original coefficient multiplied by 10n, where n is the
absolute difference between the exponents. Integer
addition or subtraction of the coefficients, taking signs
into account, then gives the exact result coefficient.
The result exponent is the minimum of the exponents
of the operands.

For example, {0, 123, −1} + {0, 127, −1} gives {0,
250, −1}, as does {0, 50, −1} + {0, 2, +1}.

Note that in the common case where no alignment
or rounding of the result is necessary, the calculations
of coefficient and exponent are independent.

3.5 Multiplication: Multiplication is the simplest
operation to describe; the coefficients of the operands
are multiplied together to give the exact result
coefficient, and the exponents are added together to
give the result exponent.

For example, {0, 25, 3} × {0, 2, 1} gives {0, 50, 4}.
Again, the calculations of coefficient and exponent are
independent unless rounding is necessary.

3.6 Division: The rules for division are more
complex, and some languages normalize all division
results. Here, a number such as {0, 240, −2} when
divided by two becomes {0, 120, −2} (not {0, 12, −1}).
The precision of the result will be no more than that
necessary for the exact result of division of the integer
coefficient. For example, if the working precision is 9
then {0, 241, −2} ÷ 2 gives {0, 1205, −3} and {0, 241,
−2} ÷ 3 gives, after rounding, {0, 803333333, −9}. This
approach gives integer or same-scale results where
possible, while allowing post-operation normalization
for languages or applications which require it.

3.7 Comparison: A comparison compares the
numerical values of the operands, and therefore does
not distinguish between redundant encodings. For
example, {1, 1200, −2} compares equal to {1, 12, 0}.
The actual values of the coefficient or exponent can
be determined by conversion to a string (or by some
unspecified operation). For type checking, it is useful
to provide a means for extracting the exponent.

3.8 Conversions: Conversions between the
abstract form of decimal numbers and strings are
more straightforward than with binary floating-point, as
conversions can be exact in both directions. In
particular, a conversion from a number to a string and
back to a number can be guaranteed to reproduce the
original sign, coefficient, and exponent. Note that
(unless deliberately rounded) the length of the
coefficient, and hence the exponent, of a number is
preserved on conversion from a string to a number
and vice versa. For example, the five-character string
"1.200" will be converted to the number {0, 1200, −3},
not {0, 12, −1}.

3.9 Other Operations: The arithmetic defines a
number of operations in addition to those already
described. abs, max, min, remainder-near, round-
to-integer, and square-root are the usual operations
as defined in IEEE 854. Similarly, minus and plus are
defined in order to simplify the mapping of the prefix −
and prefix + operators present in most languages.
Divide-integer and remainder are operators which
provide the truncating remainder used for integers and
for floating-point. If the operands x and y are given to
the divide-integer and remainder operations, resulting
in i and r respectively, then the identity x = (i × y) + r
holds. An important operator, rescale, sets the
exponent of a number and adjusts its coefficient (with
rounding, if necessary) to maintain its value. For
example, rescaling the number {0, 1234567, −4} so its
exponent is −2 gives {0, 12346, −2}.

4.0 Radix Conversion Algorithms:

In this section, we present two very fast radix
conversion algorithms that do not always return a 1
Our study is easily generalizable to directed
roundings: we focus on round-to-nearest for the sake
of brevity. correctly-rounded result. These algorithms
require the availability of a fused multiply-add (fma)
instruction in binary FP arithmetic. Their accuracy will
suffice for our purpose (implementing decimal
functions using the binary ones), but they cannot be
directly used for implementing the (correctly rounded)
radix conversions specified by the IEEE 754-2008
standard for FP arithmetic. And yet, we can fairly
easily precompute the very few input values for which
these algorithms do not provide correctly-rounded
conversions, and use this information to design
variants that always return correctly rounded results.
Early works on radix conversion were done by
Goldberg [17] and by Matula [26]. At that time, it was
assumed that the processors’ arithmetic was binary,
and that the user wanted to enter and read data in
decimal. Assuming a radix-2 underlying arithmetic and

Science and Technology Publishing (SCI & TECH)
ISSN: 2632-1017

Vol. 5 Issue 8, August - 2021

www.scitechpub.org
SCITECHP420178 1029

a radix-10 user interface, algorithms for input and
output radix conversion can be found in the literature
[11]–[13], [29], [30]. The IEEE 754–2008 standard [19]
specifies two encoding systems for decimal floating-
point arithmetic, called the decimal and binary
encodings. The reason for that is that the binary
encoding makes a software implementation of decimal
arithmetic easier, whereas the decimal encoding is
more suited for a hardware implementation. The set of
representable floating-point numbers is the same for
both encoding systems, so that this additional
complexity is transparent for most users. We focus
here on the binary encoding. In that encoding, the
exponent as well as 3 to 4 leading bits of the
significand are stored in a “combination field”, and the
remaining significand bits are stored in a “trailing
significand field”. We can easily assume here (packing
to and unpacking from the combination and trailing
significand fields is simple) that a decimal number x10
is represented by an exponent e10 and an integral
significand X10, |X10| ≤ 10p10 − 1 such that x10 =
X10 ꞏ 10e10−p10+1 . From this, one can easily
deduce that converting from decimal to binary
essentially consists in performing, in binary arithmetic,
the multiplication X10 × 10e10−p10+1 , where X10 is
already available in binary, and the binary
representation of 10e10−p10+1 (or, merely, a suitable
approximation to that number) is precomputed and
stored in memory. Conversion from binary to decimal
will essentially consist in performing a multiplication by
the inverse constant (or, merely, a suitable
approximation to it), with some additional difficulty
linked with decimal exponent guess and rounding. In a
very comprehensive study [14], Cornea et al. give
constraints on the accuracy of the approximation to
the powers of ten used in conversions, suggest ways
of performing decimal roundings, and give algorithms
for implementing decimal arithmetic in software,
assuming the ensl-00463353, version 1 - 11 Mar 2010
binary encoding is used. Our goal is to implement
conversions using, for performing the multiplications
by the factors 10e10−p10+1, a very fast FP multiply-
by-a-constant algorithm suggested by Brisebarre and
Muller [10], and then to use these fast conversions for
implementing functions in decimal arithmetic using
already existing binary functions.

CONCLUSION: The new data type described here
combines the advantages of algorism and modern
floating-point arithmetic. The integer coefficient means
that conversions to and from fixed-point data and
character representations are fast and efficient. The
lack of normalization allows strongly typed decimal
numbers and improves the performance of the most
common operations and conversions. The addition of
the IEEE 854 subnormal and special values and other
features means that full floating-point facilities are
available on decimal numbers without costly and
difficult conversions to and from binary floating-point.
These performance and functional advantages are
complemented by easier programming and the
reduced risk of error due to the automation of scaling
and other operations.

ACKNOWLEDGEMENT: Every success stands as
a testimony not only to the hardship but also to hearts
behind it. Likewise, the present work has been
undertaken and completed with direct and indirect
help from many people, my friends ,My wife ,My elder
daughter Dr.Vaishnavi Sharma (MBBS) and I would
like to acknowledge all of them for the same.

REFERENCES:

[1].H. H. Goldstine and Adele Goldstine, “The
Electronic Numerical Integrator and Computer
(ENIAC)”, IEEE Annals of the History of Computing,
Vol. 18 #1, pp10–16, IEEE, 1996.

[2].Martin H. Weik, “A Third Survey of Domestic
Electronic Digital Computing Systems, Report No.
1115”, 1131pp, Ballistic Research Laboratories,
Aberdeen Proving Ground, Maryland, March 1961.

[3].Hermann Schmid, “Decimal Computation”,
ISBN 047176180X, 266pp, Wiley, 1974.

[4].Annie Tsang and Manfred Olschanowsky, “A
Study of DataBase 2 Customer Queries”, IBM
Technical Report TR 03.413, 25pp, IBM Santa Teresa
Laboratory, San Jose, CA, April 1991.

[5].Akira Shibamiya, “Decimal arithmetic in
applications and hardware”, 2pp, pers. comm., 14
June 2000.

[6].W. J. Cody et al, “IEEE 854-1987 IEEE
Standard for Radix-Independent Floating-Point
Arithmetic”, 14pp, IEEE, March 1987.

[7].Brian Marks and Neil Milsted, “ANSI X3.274-
1996: American National Standard for Information
Technology – Programming Language REXX”, 167pp,
ANSI, February 1996.

[8].European Commission, “The Introduction of the
Euro and the Rounding of Currency Amounts”, 29pp,
European Commission Directorate General II
Economic and Financial Affairs, 1997.

[9].European Commission Directorate General II,
“The Introduction of the Euro and the Rounding of
Currency Amounts”, II/28/99-EN Euro Papers No. 22.,
32pp, DGII/C-4-SP(99) European Commission, March
1998, February 1999.

[10].N. Brisebarre and J.-M. Muller. Correctly
rounded multiplication by arbitrary precision
constants. IEEE Transactions on Computers,
57(2):165–174, February 2008.

[11]. R. G. Burger and R. Kent Dybvig. Printing
floating point numbers quickly and accurately. In
Proceedings of the SIGPLAN’96 Conference on
Programming Languages Design and Implementation,
pages 108–116, June 1996.

[12].W. D. Clinger. How to read floating-point
numbers accurately. ACM SIGPLAN Notices,
25(6):92–101, June 1990. ensl-00463353, version 1 -
11 Mar 2010

Science and Technology Publishing (SCI & TECH)
ISSN: 2632-1017

Vol. 5 Issue 8, August - 2021

www.scitechpub.org
SCITECHP420178 1030

[13]. W. D. Clinger. Retrospective: how to read
floating-point numbers accurately. ACM SIGPLAN
Notices, 39(4):360– 371, April 2004.

[14]. M. Cornea, J. Harrison, C. Anderson, P. T. P.
Tang, E. Schneider, and E. Gvozdev. A software
implementation of the IEEE 754R decimal floating-
point arithmetic using the binary encoding format.
IEEE Transactions on Computers, 58(2):148–162,
2009.

[15]. M. Daumas, C. Mazenc, X. Merrheim, and J.-
M. Muller. Modular range reduction: A new algorithm
for fast and accurate computation of the elementary
functions. Journal of Universal Computer Science,
1(3):162–175, March 1995.

[16]. L. Fousse, G. Hanrot, V. Lefevre, P. P `
elissier, and P. Zim- ´ mermann. MPFR: A Multiple-
Precision Binary FloatingPoint Library with Correct
Rounding. ACM Transactions on Mathematical
Software, 33(2), 2007. available at http:
//www.mpfr.org/.

[17]. I. B. Goldberg. 27 bits are not enough for 8-
digit accuracy. Commun. ACM, 10(2):105–106, 1967.

[18]. J. Harrison. Decimal transcendentals via
binary. In Proceedings of the 19th IEEE Symposium
on Computer Arithmetic (ARITH-19). IEEE Computer
Society Press, June 2009.

[19].IEEE Computer Society. IEEE Standard for
FloatingPoint Arithmetic. IEEE Standard 754-2008,
August 2008. available at
http://ieeexplore.ieee.org/servlet/opac?
punumber=4610933.

[20]. Francisco J. Jaime, Julio Villalba, Javier
Hormigo, and Emilio L. Zapata. Pipelined architecture
for additive range reduction. J. Signal Process. Syst.,
53(1-2):103–112, 2008.

[21].V. Lefevre and J.-M. Muller. Worst cases for
correct ` rounding of the elementary functions in
double precision. In N. Burgess and L. Ciminiera,
editors, Proceedings of the 15th IEEE Symposium on
Computer Arithmetic (ARITH16), Vail, CO, June 2001.

[22]. V. Lefevre, J.-M. Muller, and A. Tisserand.
Towards cor- ` rectly rounded transcendentals. In
Proceedings of the 13th IEEE Symposium on
Computer Arithmetic. IEEE Computer Society Press,
Los Alamitos, CA, 1997.

[23].V. Lefevre, D. Stehl ` e, and P. Zimmermann.
Worst cases for ´ the exponential function in the IEEE
754r decimal64 format. In Reliable Implementation of
Real Number Algorithms: Theory and Practice,
Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2008.

[24].P. Markstein. IA-64 and Elementary Functions:
Speed and Precision. Hewlett-Packard Professional
Books. PrenticeHall, Englewood Cliffs, NJ, 2000.

[25].Peter Markstein. The new IEEE-754 standard
for floating point arithmetic. In Numerical Validation in

Current Hardware Architectures, number 08021 in
Dagstuhl Seminar Proceedings, Dagstuhl, Germany,
2008. Internationales Begegnungs- und
Forschungszentrum fur Informatik (IBFI), ¨ Schloss
Dagstuhl, Germany.

[26].D. W. Matula. In-and-out conversions.
Communications of the ACM, 11(1):47–50, January
1968.

[27].J.-M. Muller. Elementary Functions, Algorithms
and Implementation. Birkhauser Boston, MA, 2nd
edition, 2006. ¨

[28]. Jean-Michel Muller, Nicolas Brisebarre,
Florent de Dinechin, Claude-Pierre Jeannerod,
Vincent Lefevre, ` Guillaume Melquiond, Nathalie
Revol, Damien Stehle,´ and Serge Torres. Handbook
of Floating-Point Arithmetic . Birkhauser Boston, 2010.
ACM G.1.0; G.1.2; G.4; B.2.0; ¨ B.2.4; F.2.1., ISBN
978-0-8176-4704-9.

[29].S. Rump. Solving algebraic problems with high
accuracy (habilitationsschrift). In Kulisch and
Miranker, editors, A New Approach to Scientific
Computation, pages 51–120. Academic Press, New
york, NY, 1983.

[30].G. L. Steele Jr. and J. L. White. Retrospective:
how to print floating-point numbers accurately. ACM
SIGPLAN Notices , 39(4):372–389, april 2004.

[31].Julio Villalba, Tomas Lang, and Mario A.
Gonzalez. Double-residue modular range reduction
for floatingpoint hardware implementations. IEEE
Trans. Comput., 55(3):254–267, 2006.

