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  Abstract: This paper introduces a new 
approach to decimal floating-point which not only 
provides the strict results which are necessary for 
commercial applications but also meets the 
constraints and requirements of the IEEE 854 
standard. A hardware implementation of this 
arithmetic is in development, and it is expected 
that this will significantly accelerate a wide variety 
of applications. Keywords: Arithmetic on Decimal 
Numbers & Design, Rounding, Precision, 
Addition, Subtraction, Multiplication, Division, 
Compare, Radix Conversion. 

1. Introduction: Many early electronic computers, 
such as “The Electronic Numerical Integrator and 
Computer” (ENIAC), also used decimal arithmetic 
(and sometimes even decimal addressing). 
Computers needed at least two arithmetic units (one 
for binary address calculations and the other for 
decimal computations) and so, in general, there was a 
natural tendency to economize and simplify by 
providing only binary arithmetic units. The remainder 
of this section explains why decimal arithmetic and 
hardware are still essential. The variety of decimal 
data types in use is introduced, together with a 
description of the arithmetic used on these types, 
which increasingly needs floating-point.  

2.Arithmetic On Decimal Numbers: Traditionally, 
calculation with decimal numbers has used exact 
arithmetic, where the addition of two numbers uses 
the largest scale necessary, and multiplication results 
in a number whose scale is the sum of the scales of 
the operands (1.25 × 3.42 gives 4.2750, for example). 
However, as applications and commercial software 
products have become increasingly complex, simple 
rational arithmetic of this kind has become 
inadequate. Repeated multiplications require 
increasingly long scaled integers, often dramatically 
slowing calculations as they soon exceed the limits of 
any available binary or decimal integer hardware. 
Further, even financial calculations need to deal within 
an increasingly wide range of values. The manual 
tracking of scale over such wide ranges is difficult, 
tedious, and very error-prone. The obvious solution to 
this is to use a floating-point arithmetic. The use of 
floating-point may seem to contradict the 
requirements for exact results and preservation of 
scales in commercial arithmetic; floating-point is 
perceived as being approximate, and normalization 

loses scale information. For example, 2.50 can be 
stored as 250 × 10−2, allowing immediate addition to 
12.25 (stored as 1225 × 10−2) without requiring 
shifting. Similarly, after adding 1.23 to 1.27, no 
normalization shift to remove the ‘extra’ 0 is needed.  

 3.The Decimal Arithmetic Design: The core of 
the design is the abstract model of finite numbers. In 
order to support the required exact arithmetic on 
decimal fractions, these comprise an integer 
coefficient together with a conventional sign and 
signed integer exponent (the exponent is the negative 
of the scale used in scaled-integer designs). The 
numerical value of a number is given by (−1) sign × 
coefficient × 10exponent.  

3.1 Commercial Rounding: The extra rounding 
mode is called round-half-up, which is a requirement 
for many financial calculations (especially for tax 
purposes and in Europe). In this mode, if the digits 
discarded during rounding represent greater than or 
equal to half (0.5) of the value of a one in the next left 
position then the result should be rounded up. 
Otherwise the discarded digits are ignored. This is in 
contrast to round-half-even, the default IEEE 854 
rounding mode, where if the discarded digits are 
exactly half of the next digit then the least significant 
digit of the result will be even. It is also recommended 
that implementations offer two further rounding 
modes: round-half-down (where a 0.5 case is rounded 
down) and round-up (round away from zero).  

3.2 Precision: The working precision setting in the 
context is a positive integer which sets the maximum 
number of significant digits that can result from an 
arithmetic operation. In the case of software (which 
may well support unlimited precision), this lets the 
programmer set the precision and hence limit 
computation costs. For example, if a daily interest rate 
multiplier, R, is 1.000171 (0.0171%, or roughly 6.4% 
per annum), then the exact calculation of the yearly 
rate in a non-leap year is R365. To calculate this to 
give an exact result needs 2191 digits, whereas a 
much shorter result which is correct to within one unit 
in the last place (ulp) will almost always be sufficient 
and could be calculated very much faster. In the case 
of hardware, precision control has little effect on 
performance, but allows the hardware to be used for 
calculations of a different precision from the available 
‘natural’ register size.  
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 3.3 Arithmetic Rules: The design which permits 
both integer and floating-point arithmetic to be carried 
out in the same processing unit, with obvious 
economies in either hardware or a software 
implementation. The ability to handle integers as 
easily as fractions avoids conversions (such as when 
multiplying a cost by a number of units) and permits 
the scale (type) of numbers to be preserved when 
necessary. Also, since the coefficient is a ‘right-
aligned’ integer, conversions to and from other integer 
representations (such as BCD or binary) are 
simplified. To achieve the necessary results, every 
operation is carried out as though an infinitely precise 
mathematical result is first computed, using integer 
arithmetic on the coefficient where possible. 
Rounding, the processing of overflow and underflow 
conditions and the production of subnormal results are 
defined in IEEE 854. The following subsections 
describe the required operators (including some not 
defined in IEEE 854), and detail the rules by which 
their initial result (before any rounding) is calculated. 
The notation {sign, coefficient, exponent} is used here 
for the numbers in examples. All three parameters are 
integers, with the third being a signed integer. 

3.4 Addition and Subtraction: If the exponents of 
the operands differ, then their coefficients are first 
aligned; the operand with the larger exponent has its 
original coefficient multiplied by 10n, where n is the 
absolute difference between the exponents. Integer 
addition or subtraction of the coefficients, taking signs 
into account, then gives the exact result coefficient. 
The result exponent is the minimum of the exponents 
of the operands. 

For example, {0, 123, −1} + {0, 127, −1} gives {0, 
250, −1}, as does {0, 50, −1} + {0, 2, +1}. 

Note that in the common case where no alignment 
or rounding of the result is necessary, the calculations 
of coefficient and exponent are independent. 

3.5 Multiplication: Multiplication is the simplest 
operation to describe; the coefficients of the operands 
are multiplied together to give the exact result 
coefficient, and the exponents are added together to 
give the result exponent. 

For example, {0, 25, 3} × {0, 2, 1} gives {0, 50, 4}. 
Again, the calculations of coefficient and exponent are 
independent unless rounding is necessary. 

3.6 Division: The rules for division are more 
complex, and some languages normalize all division 
results. Here, a number such as {0, 240, −2} when 
divided by two becomes {0, 120, −2} (not {0, 12, −1}). 
The precision of the result will be no more than that 
necessary for the exact result of division of the integer 
coefficient. For example, if the working precision is 9 
then {0, 241, −2} ÷ 2 gives {0, 1205, −3} and {0, 241, 
−2} ÷ 3 gives, after rounding, {0, 803333333, −9}. This 
approach gives integer or same-scale results where 
possible, while allowing post-operation normalization 
for languages or applications which require it. 

3.7 Comparison: A comparison compares the 
numerical values of the operands, and therefore does 
not distinguish between redundant encodings. For 
example, {1, 1200, −2} compares equal to {1, 12, 0}. 
The actual values of the coefficient or exponent can 
be determined by conversion to a string (or by some 
unspecified operation). For type checking, it is useful 
to provide a means for extracting the exponent. 

3.8 Conversions: Conversions between the 
abstract form of decimal numbers and strings are 
more straightforward than with binary floating-point, as 
conversions can be exact in both directions. In 
particular, a conversion from a number to a string and 
back to a number can be guaranteed to reproduce the 
original sign, coefficient, and exponent. Note that 
(unless deliberately rounded) the length of the 
coefficient, and hence the exponent, of a number is 
preserved on conversion from a string to a number 
and vice versa. For example, the five-character string 
"1.200" will be converted to the number {0, 1200, −3}, 
not {0, 12, −1}.  

3.9 Other Operations: The arithmetic defines a 
number of operations in addition to those already 
described. abs, max, min, remainder-near, round-
to-integer, and square-root are the usual operations 
as defined in IEEE 854. Similarly, minus and plus are 
defined in order to simplify the mapping of the prefix − 
and prefix + operators present in most languages. 
Divide-integer and remainder are operators which 
provide the truncating remainder used for integers and 
for floating-point. If the operands x and y are given to 
the divide-integer and remainder operations, resulting 
in i and r respectively, then the identity x = (i × y) + r 
holds. An important operator, rescale, sets the 
exponent of a number and adjusts its coefficient (with 
rounding, if necessary) to maintain its value. For 
example, rescaling the number {0, 1234567, −4} so its 
exponent is −2 gives {0, 12346, −2}.  

4.0 Radix Conversion Algorithms: 

In this section, we present two very fast radix 
conversion algorithms that do not always return a 1 
Our study is easily generalizable to directed 
roundings: we focus on round-to-nearest for the sake 
of brevity. correctly-rounded result. These algorithms 
require the availability of a fused multiply-add (fma) 
instruction in binary FP arithmetic. Their accuracy will 
suffice for our purpose (implementing decimal 
functions using the binary ones), but they cannot be 
directly used for implementing the (correctly rounded) 
radix conversions specified by the IEEE 754-2008 
standard for FP arithmetic. And yet, we can fairly 
easily precompute the very few input values for which 
these algorithms do not provide correctly-rounded 
conversions, and use this information to design 
variants that always return correctly rounded results. 
Early works on radix conversion were done by 
Goldberg [17] and by Matula [26]. At that time, it was 
assumed that the processors’ arithmetic was binary, 
and that the user wanted to enter and read data in 
decimal. Assuming a radix-2 underlying arithmetic and 
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a radix-10 user interface, algorithms for input and 
output radix conversion can be found in the literature 
[11]–[13], [29], [30]. The IEEE 754–2008 standard [19] 
specifies two encoding systems for decimal floating-
point arithmetic, called the decimal and binary 
encodings. The reason for that is that the binary 
encoding makes a software implementation of decimal 
arithmetic easier, whereas the decimal encoding is 
more suited for a hardware implementation. The set of 
representable floating-point numbers is the same for 
both encoding systems, so that this additional 
complexity is transparent for most users. We focus 
here on the binary encoding. In that encoding, the 
exponent as well as 3 to 4 leading bits of the 
significand are stored in a “combination field”, and the 
remaining significand bits are stored in a “trailing 
significand field”. We can easily assume here (packing 
to and unpacking from the combination and trailing 
significand fields is simple) that a decimal number x10 
is represented by an exponent e10 and an integral 
significand X10, |X10| ≤ 10p10 − 1 such that x10 = 
X10 ꞏ 10e10−p10+1 . From this, one can easily 
deduce that converting from decimal to binary 
essentially consists in performing, in binary arithmetic, 
the multiplication X10 × 10e10−p10+1 , where X10 is 
already available in binary, and the binary 
representation of 10e10−p10+1 (or, merely, a suitable 
approximation to that number) is precomputed and 
stored in memory. Conversion from binary to decimal 
will essentially consist in performing a multiplication by 
the inverse constant (or, merely, a suitable 
approximation to it), with some additional difficulty 
linked with decimal exponent guess and rounding. In a 
very comprehensive study [14], Cornea et al. give 
constraints on the accuracy of the approximation to 
the powers of ten used in conversions, suggest ways 
of performing decimal roundings, and give algorithms 
for implementing decimal arithmetic in software, 
assuming the ensl-00463353, version 1 - 11 Mar 2010 
binary encoding is used. Our goal is to implement 
conversions using, for performing the multiplications 
by the factors 10e10−p10+1, a very fast FP multiply-
by-a-constant algorithm suggested by Brisebarre and 
Muller [10], and then to use these fast conversions for 
implementing functions in decimal arithmetic using 
already existing binary functions.  

CONCLUSION: The new data type described here 
combines the advantages of algorism and modern 
floating-point arithmetic. The integer coefficient means 
that conversions to and from fixed-point data and 
character representations are fast and efficient. The 
lack of normalization allows strongly typed decimal 
numbers and improves the performance of the most 
common operations and conversions. The addition of 
the IEEE 854 subnormal and special values and other 
features means that full floating-point facilities are 
available on decimal numbers without costly and 
difficult conversions to and from binary floating-point. 
These performance and functional advantages are 
complemented by easier programming and the 
reduced risk of error due to the automation of scaling 
and other operations. 
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