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Abstract— Fully homomorphic encryption (FHE) 
has been considered as the “holy grail” of 
cryptography for its adaptability as a 
cryptographic primitive and wide range of 
potential applications. It opens the door to many 
new capabilities with the goal to solve the IT 
world’s problems of security and trust. FHE is a 
new but quickly developing technology. FHE is a 
cryptographic primitive that allows one to 
compute arbitrary functions over encrypted data. 
Since 2009, when Craig Gentry showed that FHE 
can be realized in principle, there has been a lot of 
new discoveries and inventions in this particular 
field and substantial progress has been made in 
finding more practical and more efficient 
schemes, as well. Such schemes have numerous 
applications since it allows users to encrypt their 
private data locally but still outsource the 
computation of the encrypted data without risking 
exposing the actual data. The new schemes 
significantly reduce the computational cost of 
FHE and make practical deployment within reach. 
However, FHE is made possible with many new 
problems and assumptions that are not yet well 
studied. 
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I.  INTRODUCTION  

The purpose of homomorphic encryption is to allow 
computation on encrypted data. Thus data can remain 
confidential while it is processed. This enables useful 
tasks to be accomplished with data residing in 
untrusted environments. In a world of distributed 
computation and heterogeneous networking this is a 
hugely valuable capability. One of the goal in 
cryptography had been the problem of finding a 
general method for computing on encrypted data. It 
was proposed, first, by Rivest, Adleman and 
Dertouzos in 1978. [8] In encryption schemes, Bob 
encrypts a plaintext message to obtain a ciphertext. 
Alice decrypts the ciphertext to recover the plaintext. 
In Fully Homomorphic Encryption, parties that do not 
know the plaintext data can perform computations on  
 
 

it by performing computations on the corresponding 
ciphertexts.[3] 
The development of fully homomorphic encryption is a 
revolutionary advance. It extends the scope of the 
computations which can be applied to process 
encrypted data homomorphically. Fully homomorphic 
encryption (FHE) allows evaluation of arbitrary 
functions on encrypted data, and as such has a 
multitude of potential applications such as private 
cloud computing. Gentry [5, 6] was the first to show 
that FHE is theoretically possible. His construction 
consisted of three parts: first, construct an encryption 
scheme that is somewhat homomorphic, i.e. that can 
evaluate functions of limited complexity (think low 
degree), secondly, simplify the decryption function of 
this scheme as much as possible (so called 
squashing), thirdly, evaluate this simplified decryption 
function homomorphically to obtain ciphertexts with a 
fixed inherent noise size (so called bootstrapping).[4]  
This has become a very interesting topic of study 
because of its numerous applications in the real world. 
Since Gentry published his idea in 2009 [5, 6] there 
has been enormous interest in the area, for improving 
the schemes, implementing them and applying them. 
As an example, let us consider cloud computing, 
which we mentioned above. As more and more data is 
utilized into cloud storage, often unencrypted, 
considerable trust is required in the cloud storage 
providers. The Cloud Security Alliance lists data 
breach as the top threat to cloud security. Encrypting 
the data with conventional encryption avoids the 
problem. However, now the user cannot operate on 
the data and must download the data to perform the 
computations locally. With fully homomorphic 
encryption the cloud can perform computations in the 
interests of the user and return only the encrypted 
result.  

II. SOME HISTORICAL NOTES 

The notion of encryption schemes that permit 
nontrivial computation on encrypted data was first 
proposed by Rivest, Adleman and Dertouzos [8] in 
1978, shortly after the invention of the RSA 
cryptosystem,  in an especially provident paper titled 
“On Data Banks and Privacy Homomorphisms”. 
Rivest et al. [8] proposed the exponentiation function 
and the RSA function as additive and multiplicative 
“privacy homomorphisms”, respectively. Note, 
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however, that neither of these functions by 
themselves provide even chosen plaintext security. [7] 
Their paper states, although there are some truly 
essential limitations on what can be accomplished,”… 
we shall see that it appears likely that there exist 
encryption functions which permit encrypted data to 
be operated on without preliminary decryption of the 
operands, for many sets of interesting operations. 
These special encryption functions we call “privacy 
homomorphisms”; they form an interesting subset of 
arbitrary encryption schemes". Despite the optimism 
of Rivest, Adleman, and Dertouzos, fully 
homomorphic encryption remained unapproachable 
for many years.[3]   
The El Gamal encryption scheme, derived from the 
exponentiation function, is multiplicatively 
homomorphic and CPA-secure. However, methods of 
turning the RSA function into a CPA-secure 
encryption scheme, either by the hardcore-bit 
construction [9] or the RSA-OAEP construction [10], 
seem to destroy its homomorphic properties. The first 
semantically secure homomorphic encryption scheme 
follows from the work of Goldwasser and Micali [9] 
that defined the first robust notion of security for 
encryption. The GM encryption scheme supports 
addition of encrypted bits mod 2 (that is, the exclusive 
OR function). A number of encryption systems that 
are either additively or multiplicatively homomorphic 
followed this example. This includes the El Gamal 
encryption scheme [11], the Paillier encryption 
scheme [12] and its generalization by Dämgard and 
Jurik [13], a host of lattice-based encryption schemes 
starting from the work of Ajtai and Dwork [14], [15], 
[16], and many others [17], [18], [19]. All these 
schemes doesn’t support both homomorphic addition 
and multiplication of plaintexts. Constructing an 
encryption scheme that is both additively and 
multiplicatively homomorphic remained a tempting 
open question. Additively homomorphic encryption 
schemes are already quite useful in a number of 
applications. We mention here three such 
applications. Cohen and Fischer [17] proposed an 
additively homomorphic encryption scheme based on 
higher order residuosity, and showed how to use it to 
perform secure electronic voting. This proposal and its 
descendants have introduced  the modern day web-
based voting systems such as Helios [21]. Peikert and 
Waters [22] constructed lossy and all-but-one trapdoor 
functions from additively homomorphic encryption 
schemes (with some extra properties).They 
successively use them to construct chosen ciphertext 
secure (CCA-secure) public key encryption schemes. 
The third application is to Private Information Retrieval 
(PIR) protocols. 
It took too much time the construction of encryption 
schemes that surpass simple additive (or 
multiplicative) homomorphisms. Boneh, Goh and 
Nissim [23] showed an encryption scheme based on 
bilinear pairings on elliptic curves that could perform 
arbitarily many additions as well as a single 
multiplication on plaintexts. Gentry, Halevi and 
Vaikuntanathan [24] later showed 

how to achieve the same ability using lattices. Another 
proposal for fully homomorphic encryption was that of 
Fellows and Koblitz [25] which is based on the 
hardness of the Ideal Membership Problem in the 
multivariate polynomial ring. An important application 
of homomorphic encryption derives from the work of 
Kushilevitz and Ostrovsky [26]. They showed how to 
construct (single-server) Private Information Retrieval 
(PIR) protocols with sub-linear communication, from 
any additively homomorphic encryption scheme.  
Private Information Retrieval is closely connected to 
Fully Homomorphic Encryption. The big breakthrough 
came with the work of Gentry [6] in 2009. In this work 
he showed the first possible construction of a fully 
homomorphic encryption scheme that enables 
computation of arbitrary functions on encrypted data 
and producing compact ciphertexts, and not only. 
Gentry’s work showed a general method (a “blue-
print”) to construct such systems, as well. This blue-
print has been instantiated with a number of 
cryptographic assumptions, yielding progressively 
simpler and more efficient schemes ([27], [28], [29], 
[30]).  
Although the blue-print was an elegant and general 
one, schemes constructed along these lines suffer 
from a number of deficiencies, including the 
dependence on a host of non-standard cryptographic 
assumptions, and severe limitations on efficiency. 
Gentry’s construction has three components: a 
“somewhat homomorphic” encryption scheme that can 
evaluate a limited class of functions, a method of 
“bootstrapping”, a sufficiently powerful homomorphic 
encryption scheme called a “bootstrappable” 
encryption scheme, into a fully homomorphic 
encryption scheme and finally, to bring it all together, 
a specialized method of turning the somewhat 
homomorphic scheme into a bootstrappable 
scheme.[7]  

III. HE AND HE SCHEMES 

We live in an era where the most people all over the 
world possess more than one digital device with 
limited local storage. Therefore, there is a growing 
need for services that let users easily store and 
access personal files. Data that was previously stored 
on paper is being converted to a digital file. Since 
most of these devices are not able to process data 
locally, they will often upload it to a third party for 
processing. However, this data may be private, the 
third party may not be trustworthy, or both. Therefore, 
the data should be encrypted before it is transferred. 
Cryptography refers generally to secret writing based 
on the use of ciphers. A cipher is a technique used to 
keep out of sight information or expose it, with the 
help of which a plaintext is converted into a ciphertext 
and vice versa. Most ciphers depend on an algorithm 
and a key. While the algorithm establishes a way to 
transform data, the key is used as a parameter that 
modifies its behavior in a complex manner. 
Cryptosystems are usually classified in two 
categories: those where a common key is used for 
both ciphering and deciphering, based on private-key 
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cryptography, and those supported in public-key 
cryptography, where a public key is used to cipher 
messages, and the ciphertext has to be deciphered by 
applying the corresponding secret key.[31] 
Encryption is a method used for encoding information 
with the goal to ensure confidentiality so that only 
authorised parties can access the information. There 
exists different types of encryption schemes that can 
be either symmetric or asymmetric. In the symmetric 
setting, the same key is used for encryption and 
decryption and it is commonly used when a secure 
channel is already established. In the asymmetric 
setting, there exists a public and private key for each 
party where the public key is used for encryption and 
the private key for decryption. The public key is 
shared between parties while the private key is kept 
secret so that only the holder of the secret key can 
decrypt the message encrypted under the 
corresponding public key. An analogy often used for 
homomorphic cryptosystems is the that of a jewellery 
shop. Alice owns a jewellery shop and has raw 
precious material that she wants her workers to get 
together into jewellery. The problem is that she 
doesn’t trust her workers - she is afraid they will thieve 
the material if given the opportunity. She wants her 
workers to be able to process the materials without 
actually having access to them. In order to solve this 
problem, Alice designs a transparent, impenetrable 
glove box, puts the raw material inside, locks the box 
with a key that only she has access to and then gives 
the box to one of the workers. The worker can 
assemble the jewels inside the box using the gloves 
without being able to access the materials inside since 
it is impenetrable. Once the worker is finished, the 
worker gives the box back to Alice who can unlock it 
with her key and extract the jewellery. In this analogy, 
the data is represented by the material that needs to 
be processed and the encryption of that data is 
represented by the box. The special thing about this 
cryptosystem is that it has gloves allowing the data to 
be processed without accessing it. (see [2]) 
Homomorphic Encryption (HE) is a kind of encryption 
scheme that allows a third party (e.g., cloud, service 
provider) to perform certain computable functions on 
the encrypted data while preserving the features of 
the function and format of the encrypted data. The 
reason why it is called “homomorphic” is that, roughly 
speaking, there exists a correspondence between the 
space of the messages and the space of the 
ciphertexts, in such a way that operations performed 
on ciphertexts are somehow reflected in operations on 
the messages they encrypt. [20] 
Indeed, this homomorphic encryption corresponds to 
a mapping in the abstract algebra. As an example for 
an additively HE scheme, for sample messages 𝑚1 

and 𝑚2, one can obtain 𝐸(𝑚1  + 𝑚2) by using 𝐸(𝑚1) 
and 𝐸(𝑚2)  without knowing  𝑚1  and 𝑚2  explicitly, 
where 𝐸 denotes the encryption function. [32] 
It is known that in traditional encryption schemes, Bob 
encrypts a plaintext message to obtain a cipher text. 
Alice decrypts the ciphertext to find the plaintext. So, 
with this standard encryption, one can only secure the 

following steps: establishment of communication and 
data transfer. In Homomorphic Encryption, parties that 
do not know anything about the plaintext data can 
perform computations on it by performing 
computations on the corresponding ciphertext. 
An HE scheme is primarily characterized by four 

operations: 𝐾𝑒𝑦𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐 , and 𝐸𝑣𝑎𝑙 . KeyGen is 
the operation that generates a secret and public key 
pair for the asymmetric version of HE or a single key 

for the symmetric version. Actually, 𝐾𝑒𝑦𝐺𝑒𝑛, 𝐸𝑛𝑐, and 
𝐷𝑒𝑐  are not different from their classical tasks in 
conventional encryption schemes. However, Eval is 
an HE-specific operation, which takes ciphertexts as 
input and outputs a ciphertext corresponding to a 

functioned plaintext. 𝐸𝑣𝑎𝑙  performs the function 𝑓() 
over the ciphertexts (𝑐1, 𝑐2)  without seeing the 
messages (𝑚1, 𝑚2) . Eval takes ciphertexts as input 
and outputs evaluated ciphertexts. The most critical 
point in this homomorphic encryption is that the format 
of the ciphertexts, after an evaluation process, must 
be preserved in order to be decrypted correctly. 
Additionally, the size of the ciphertext should also be 
constant to support an unlimited number of 
operations. Otherwise, the increase in the ciphertext 
size will require more resources and this will limit the 
number of operations. Of all HE schemes in the 

literature, PHE schemes support the 𝐸𝑣𝑎𝑙 function for 
only either addition or multiplication, SWHE schemes 
support for only a limited number of operations or 
some limited circuits (e.g., branching programs), and 
FHE schemes support the evaluation of arbitrary 
functions (e.g., searching, sorting, max, min, etc.) for 
an unlimited number of times over ciphertexts. [32] 
Partially Homomorphic Encryption (PHE): 
A cryptosystem is partially homomorphic if it supports 
adding or multiplying of ciphertexts 
but not both operations at the same time. The 
GoldwasserMicali [9] and Paillier [12] schemes 
supported addition operations, while the RSA [34] and 
ElGamal [11] schemes supported multiplication 
operations. 
Additive Homomorphic Encryption (AHE): 
A scheme is an additive Homomorphic Encryption 
(AHE) if giving only the public key and the encryption 

of 𝑚1  and 𝑚2 , one can compute the encryption of 
𝑚1  +  𝑚2. 
Multiplicative Homomorphic Encryption (MHE): 
A scheme is a Multiplicative Homomorphic Encryption 
(MHE) if giving only the public key and the encryption 

of 𝑚1  and  𝑚2 , one can compute the encryption of 
𝑚1𝑚2. 
Asymmetric Homomorphic Encryption Algorithms 
Paillier Scheme, an AHE: 
Paillier cryptosystem is an asymmetric algorithm for 
public key cryptography and it is an AHE.The 
algorithm consists of three components: the key 
generator, the encryption algorithm and the decryption 
algorithm.  
RSA Scheme, a MHE: 
RSA is an asymmetric cryptosystem. It was described 
in 1977 by Ron Rivest, Adi Shamir and Leonard 
Adleman. The scheme summarizes in three steps: the 
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key generator, the encryption algorithm and the 
decryption algorithm. 
ElGamal cryptosystem, a MHE: 
The ElGamal encryption system is an asymmetric key 
encryption algorithm for public key Cryptography 
which is based on the DiffieHellman key exchange. It 
was described by Taher ElGamal in 1985.([33], [34]) 

IV. SOME APPLICATIONS OF HE 

The main reason for the interest in homomorphic 
cryptosystems is that they have many theoretical as 
well as practical applications in different areas of 
cryptography. In the following, we give some of them. 
1) Protection of mobile agents: One of the most 
interesting applications of homomorphic encryption is 
its use in protection of mobile agents. As we know, all 
conventional computer architectures are based on 
binary strings and only require multiplication and 
addition. So, such homomorphic cryptosystems would 
offer the possibility to encrypt a whole program so that 
it is still executable. Hence, it could be used to protect 
mobile agents against malicious hosts by encrypting 
them. The protection of mobile agents by 
homomorphic encryption can be used in two ways: (i) 
computing with encrypted functions and (ii) computing 
with encrypted data. Computation with encrypted 
functions is a special case of protection of mobile 
agents. Using homomorphic cryptosystems the 
encrypted function can be evaluated which 
guarantees its privacy. 
2) Multiparty computation: In multiparty computation 
schemes, several parties are interested in computing 
a common, public function on their inputs while 
keeping their individual inputs private. This problem 
belongs to the area of computing with encrypted data. 
Moreover, in multi-party computation protocols, the 
function that should be computed is publicly known, 
while on the contrary in the area of computing with 
encrypted data it is a private input of one party. 
3) Secret sharing scheme: In secret sharing schemes, 
parties share a secret so that no individual party can 
reconstruct the secret form the information available 
to it. However, if some parties cooperate with each 
other, they may be able to reconstruct the secret. In 
this framework, the homomorphic property implies that 
the composition of the shares of the secret is 
equivalent to the shares of the composition of the 
secrets. 
4) Threshold schemes: Both secret sharing schemes 
and the multiparty computation schemes are 
examples of threshold schemes. Threshold schemes 
can be implemented using homomorphic encryption 
techniques. 
5) Zero-knowledge proofs: This is a fundamental 
primitive of cryptographic protocols and serves as an 
example of a theoretical application of homomorphic 
cryptosystems. Zeroknowledge proofs are used to 
prove knowledge of some private information. For 
instance, consider the case where a user has to prove 
his identity to a host by logging in with her account 
and private password. Obviously, in such a protocol 
the user wants her private information (i.e., her 

password) to stay private and not to be leaked during 
the protocol operation. Zero-knowledge proofs 
guarantee that the protocol communicates exactly the 
knowledge that was expected, and no (zero) extra 
knowledge.  
6) Election schemes: In election schemes, the 
homomorphic property provides a tool to obtain the 
tally given the encrypted votes without decrypting the 
individual votes. 
7) Watermarking and fingerprinting schemes: Digital 
watermarking and fingerprinting schemes embed 
additional information into digital data. The 
homomorphic property is used to add a mark to 
previously encrypted data. In general, watermarks are 
used to identify the owner/seller of digital goods to 
ensure the copyright. In fingerprinting schemes, the 
person who buys the data should be identifiable by 
the merchant to ensure that data is not illegally 
redistributed.  
8) Oblivious transfer: It is an interesting cryptographic 
primitive. Usually in a two-party 1-out-of-2 oblivious 
transfer protocol, the first party sends a bit to the 
second party in such a way that the second party 

receives it with probability 
1

2
, without the first party 

knowing whether or not the second party received the 
bit.  
9) Commitment schemes: Commitment schemes are 
some fundamental cryptographic primitives. In a 
commitment scheme, a player makes a commitment. 
She is able to choose a value from some set and 
commit to her choice such that she can no longer 
change her mind. She does not have to declare her 
choice although she may do so at some point later. 
Some commitment schemes can be efficiently 
implemented using homomorphic property. 
10) Lottery protocols: Usually in a cryptographic 
lottery, a number pointing to the winning ticket has to 
be jointly and randomly chosen by all participants. 
Using a homomorphic encryption scheme this can be 
realized as follows: Each player chooses a random 
number which she encrypts. Then using the 
homomorphic property the encryption of the sum of 
the random values can be efficiently computed. The 
combination of this and a threshold decryption 
scheme leads to the desired functionality.  
11) Mix-nets: Mix-nets are protocols that provide 
anonymity for senders by collecting encrypted 
messages from several users. For instance, one can 
consider mix-nets that collect ciphertexts and output 
the corresponding plaintexts in a randomly permuted 
order. In such a framework, privacy is achieved by 
requiring that the permutation that matches inputs to 
outputs is kept secret to anyone except the mix-net. In 
particular, determining a correct input/output pair, i.e., 
a ciphertext with corresponding plaintext, should not 
be more effective then guessing one at random. A 
desirable property to build such mix-nets is 
reencryption which is achieved by using homomorphic 
encryption.  
12) Data aggregation in wireless sensor networks: In-
network data aggregation in WSNs is a technique that 
combines partial results at the intermediate nodes en 
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route to the base station, as a result reducing the 
communication overhead and optimizing the 
bandwidth utilization in the wireless links. However, 
this technique raises privacy and security issues if the 
sensor nodes which need to share their data with the 
aggregator node. In applications such as healthcare 
and military surveillance where the sensitivity of 
private data of the sensor is very high, the 
aggregation has to be carried out in a privacy-
preserving way, so that the sensitive data are not 
published to the aggregator. [35]  

V.FHE 

Gentry’s FHE scheme is an asymmetric encryption 
scheme based on ideal lattices. Essentially one 
generates a secret key and then a number of public 
keys, each containing “noise”, in a way that it is 
infeasible for an adversary to generate the secret key 
from the public keys. The problem with this first 
solution is that the “noise” in the ciphertext grew with 
each additional computation. This means that at a 
certain point the ciphertext will no longer decrypt to 
the original message because the “noise” has grown 
to large. Encryption schemes with this property are 
called Somewhat Homomorphic Encryption (SHE) 
schemes. The term somewhat stresses that the 
number of homomorphic operations one can perform 
is limited. In the same work [5] Gentry also provides a 
generic technique to transform SHE in FHE. Such 
technique is called Bootstrapping. Bootstrapping 
solves the problem of not being able to decrypt 
properly when the “noise” grows too large by 
homomorphically decrypting the ciphertext, performing 
a single computation on it, and then recrypting under 
a different public key. Unfortunately, the bootstrapping 
procedure is too theoretical and therefore not very 
efficient. Additionally, bootstrapping requires the non-
standard assumption of circular security. It assumes 
that it is safe to encrypt the secret key under its own 
public key [36, 5, 37]. 
Since Gentry’s first FHE scheme in 2009, several 
others have been developed [27, 28, 38, 39, 40]. In 
2010, Smart and Vercauteren [28] made the first 
attempt of implementing FHE and since then a lot of 
work has been done towards more practical 
implementations [41, 42, 43]. FHE is only suitable in 
settings where the computations involve a single user. 
This for the reason that it requires the input from the 
users to be encrypted under the same key. Imagine 
instead a scenario where users, who have uploaded 
data to the cloud in encrypted form, wish to compute 
some joint function of their data encrypted under 
different keys. To handle these multi party situations, 
in 2012, Lopéz-Alt et al. [44] introduced a multi-key 
FHE scheme based on the NTRU cryptosystem [45]. 
This scenario is significantly more complex than the 
single user setting but even in this area a lot of recent 
improvements have been done , as well. [36, 47, 48]. 
Contrary to the single user setting, there exist no 
implementation of multi-key FHE to the best of the 
author’s knowledge. A consequence of choosing non-
trival schemes that have not already been 

implemented is that the difficulties are in general 
unpredictable. The challenges include studying and 
translating the scheme into code, choosing 
parameters, designing algorithms, choosing the 
benchmarks and running experiments on them. 
Furthermore, the schemes are based on some non-
standard assumptions and Perlman and Brakerski 
state that their scheme is not practical. This makes 
implementing it a big challenge [36]: 
“We stress that our scheme is not by itself practical. 
We use the bootstrapping machinery in a way that 
introduces fair amounts of overhead into the 
evaluation process. The goal of this work, rather, is to 
indicate that the theoretical boundaries of multi-key 
FHE, and open the door for further optimisations 
bringing solutions closer to the implementable world.” 
5.1. FHE Schemes 
Let us consider now  the concepts of FHE in the 
single and multi key setting as well as details of the 
implemented schemes. 
Single-key Fully Homomorphic Encryption: 
If we are satisfied with an encryption scheme that 
supports homomorphic operations of some specific 
operation one might question that homomorphic 
encryption seems easy to realise. However, some 
situations require more operations than only one type. 
If we again consider the case of cloud computing one 
typical reason for outsourcing computations is 
because it tend to be heavy and complex. This is 
obviously not achieved by only one specific operation 
which is why we need homomorphic encryption 
schemes that support arbitrary operations. 
GSW: 

Suppose that we have two matrices 𝑪𝟏  and 𝑪𝟐  that 
have the same eigenvector 𝒔. Would it be possible to 
create an encryption scheme where 𝒔 represents the 

secret key, 𝑪  the ciphertext and 𝑚  the message in 
form of an eigenvalue that corresponds to the 
eigenvector? If the eigenvector is kept secret, the 
message should be hidden and when we know the 
eigenvector it should possible to recover the 
message. Intuitively, the answer would be no as 
finding an eigenvalue can be solved by Gaussian 
elimination in polynomial time. However, Gentry, 
Sahai and Waters [49] took this idea further and 
instead of using eigenvectors as secret keys they 
used approximate eigenvectors. As long as the noise 
vector has a lower norm than the modulus one works 
with the ciphertext will be decryptable. By relaxing the 
condition, it becomes a hard problem to solve where 
the hardness derives from the LWE problem. Gentry, 
Sahai and Waters were able to create an encryption 
scheme from a simple idea that has been the base for 
several others [47, 36, 41, 42]. 
Multi-key Fully Homomorphic Encryption: 
A motivation for FHE is the ability to be able to encrypt 
data locally but still outsource the computation of the 
encrypted data without risking to expose the actual 
data. FHE can only handle this in a single user setting 
where the ciphertexts are encrypted under the same 
key. In order to be able to compute a function on 
ciphertexts encrypted under different public keys 
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multi-key FHE was introduced by Lopéz-Alt et al. [44]. 
All the secret keys of the parties involved are needed 
in order to decrypt the ciphertext after the computation 
[44, 50, 48, 36, 47]. In other words, the parties 
involved need to jointly decrypt the ciphertext to obtain 
the output. 
Multi-key GSW: 
The GSW scheme does not support multi-key by 
nature but it is possible to convert the GSW FHE into 
a multi-key FHE. In 2014, Clear and McGoldrick 
showed how to extend the GSW scheme into multi-
key FHE. This resulted in the first multi-key FHE 
based on LWE [50]. In 2016, this work was simplified 
and improved further by Mukherjee and Wichs [47]. 
The result was a Single-Hop Multi-Key (SHMK) FHE 
scheme. The property of single-hop in this scheme 
means that all relevant keys must be known at the 
start of the homomorphic computation and the output 
cannot be combined with ciphertexts encrypted under 
other keys in a useful way without a bootstrapping 
step being performed. This means that in both of 
these works all input needed to be known in advance 
before the computation starts. In 2016, this 
requirement was removed by Brakerski and Perlman 
[36] when they showed how to extend the prior work 
to support an unbounded number of homomorphic 
operations for an unbounded number of parties. In 
their work input from new parties can be introduced 
into the computation dynamically. In addition, they 
also improved the length of the ciphertexts and the 
space complexity of an atomic operation. This scheme 
is called Fully Dynamic Multi-Key (FDMK) FHE 
scheme. The fact that input from new parties can be 
introduced into the computation dynamically is what 
makes the scheme dynamic. This is achieved via 
bootstrapping that was introduced by Gentry [5]. (see 
[2]) 
Gentry’s scheme and its implementations: 
An encryption scheme is homomorphic if it supports 
operations on encrypted data.  
As we mentioned above, in his breakthrough work, 
Gentry described in 2009 the first encryption scheme 
that supports both addition and multiplication on 
ciphertexts, i.e. a fully homomorphic encryption 
scheme [5]. The construction proceeds by successive 
steps: 
First Gentry describes a “somewhat homomorphic” 
scheme that supports a limited number of additions 
and multiplications on ciphertexts. This is because 
every ciphertext has a noise component and any 
homomorphic operation applied to ciphertexts 
increases the noise in the resulting ciphertext. Once 
this noise reaches a certain threshold the resulting 
ciphertext does not decrypt correctly anymore; this 
limits the degree of the polynomial that can be applied 
to ciphertexts. 
Secondly Gentry shows how to “squash” the 
decryption procedure so that it can be expressed as a 
low degree polynomial in the bits of the ciphertext and 
the secret key (equivalently a circuit of small depth). 
Then the breakthrough idea consists in evaluating this 
decryption polynomial not on the bits of the ciphertext 

and the secret key (as in regular decryption), but 
homomorphically on the encryption of those bits. Then 
instead of recovering the bit plaintext, one gets an 
encryption of this bit plaintext, i.e. yet another 
ciphertext for the same plaintext. Now if the degree of 
the decryption polynomial is small enough, the 
resulting noise in this new ciphertext can be smaller 
than in the original ciphertext; this is called the 
“ciphertext refresh” procedure. 
Given two refreshed ciphertexts one can apply again 
the homomorphic operation (either addition or 
multiplication), which was not necessarily possible on 
the original ciphertexts because of the noise 
threshold. Using this “ciphertext refresh” procedure 
the number of permissible homomorphic operations 
becomes unlimited and we get a fully homomorphic 
encryption scheme. 
The prerequisite for the “ciphertext refresh” procedure 
is that the degree of the polynomial that can be 
evaluated on ciphertexts exceeds the degree of the 
decryption polynomial (times two, since one must 
allow for a subsequent addition or multiplication of 
refreshed ciphertexts); this is called the 
“bootstrappability” condition. Once the scheme 
becomes bootstrappable it can be converted into a 
fully homomorphic encryption scheme by providing 
the encryption of the secret 
key bits inside the public key. Based on Gentry’s 
approach, two different fully homomorphic schemes 
are known: Gentry’s scheme [5] based on ideal 
lattices and a scheme by van Dijk, Gentry, Halevi and 
Vaikuntanathan (DGHV) over the integers, that 
appeared at Eurocrypt 2010 [24]. 
Gentry described in [5] a somewhat homomorphic 
encryption scheme that is similar to GGH [51,52] over 
ideal lattices. To reduce the degree of the decryption 
polynomial, Gentry introduced Fully Homomorphic 
Encryption over the Integers with Shorter Public Keys  
with the following transformation [5]: instead of using 
the original secret key, the decryption procedure uses 
a very sparse subset of values that adds up to the 
secret key; the full set of values is made part of the 
public key. To apply the new decryption procedure the 
original ciphertext must first be “expanded” using the 
full set of public values. This expanded ciphertext can 
then be decrypted with a low-degree polynomial in the 
bits of the new secret key (which are the characteristic 
vector of the sparse subset sum); this is called the 
“squashed decryption” procedure. 
At PKC 2010 Smart and Vercauteren [28] made the 
first attempt to implement Gentry’s scheme using a 
variant based on principal ideal lattices and requiring 
that the determinant of the lattice be a prime number. 
However the authors of [28] could not obtain a 
bootstrappable scheme because that would have 

required a lattice dimension of at least 𝑛 =  227 , 
whereas due to the prime determinant requirement 

they could not generate keys for dimensions 𝑛 >
 2048. 
Gentry and Halevi described in [53] the first 
implementation of Gentry’s scheme. The authors 
follow the same direction as Smart and Vercauteren, 
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but for key generation they eliminate the requirement 
that the determinant is a prime. Additionally they 
present many clever optimizations. Four concrete 
parameter settings are provided, from a “toy” setting in 
dimension 512, to “small”, “medium” and “large” 
settings of dimensions 2048, 8192 and 32768, 
respectively. For the “large” setting public key size is 
2.3 Gigabytes. The authors of [6] report that for an 
optimized implementation on a high-end workstation, 
key generation takes 2.2 hours, encryption takes 3 
minutes, and ciphertext refresh takes 30 minutes. 
At Eurocrypt 2010, van Dijk, Gentry, Halevi and 
Vaikuntanathan described a fully homomorphic 
encryption scheme over the integers [4]. As in 
Gentry’s scheme the authors first describe a 
somewhat homomorphic scheme supporting a limited 
number of additions and multiplications over 
encrypted bits. Then they apply Gentry’s “squash 
decryption” technique to get a bootstrappable scheme 
and then Gentry’s “ciphertext refresh” procedure to 
get a fully homomorphic scheme. The main appeal of 
the scheme (compared to the original Gentry’s 
scheme) is its conceptual simplicity: all operations are 
done over the integers instead of ideal lattices. [54] 
5.2. Libraries  
Beside theoretical research, the field of homomorphic 
encryption has been strongly active with regard to 
implementation efforts. In fact, given the strongly 
applied nature of this sort of constructions, it is 
appropriate that the development of new 
mathematical techniques and theoretical breakthrough 
proceeds closely associated with top quality 
implementation. On one hand, this contributes to 
estimate where we actually stand and how far the goal 
of practically usable homomorphic encryption is. On 
the other hand, this also helps to determine the 
limitations and the main difficulties that still remain. 
This is very important because it suggests to 
researchers and theoreticians where to concentrate 
their efforts. 
Due to the significant advancement of proposing new 
efficient schemes, open-source implementations and 
applications and growing demands from industry, 
there is a standard for FHE initiated to standardize 
FHE schemes to have an unified and simplified API, 
and clear and understandable security properties for 
use by non-experts as well as experts. The 
homomorphic encryption standards meetings are held 
once a year at different locations. The participants to 
the standardization meetings are from industry, 
academia and government [67, 68, 69]. 
Over the years have been released many 
implementations by numerous authors, via means like 
GitHub, but we will consider here only a few of them, 
in order to give a broad idea on the current state of 
the art on this matter.  
In particular, in this subsection, we will concetrate on 
HElib [55, 56, 57], SEAL [58], and TFHE [60, 61, 59]. 
HElib: An early and widely used library from IBM that 
supports the BGV scheme and bootstrapping. 
This library, authored mainly by Shai Halevi and Victor 
Shoup, implements the BGV scheme [40]. It is one of 

the most widely used libraries in applications. This 
library enables for packing of ciphertexts and SIMD 
computations, amortizing the cost for certain tasks. It 
is able to perform additions and multiplications in an 
efficient way, but the bootstrapping operation is 
significantly slow. In practice, this library is often used 
as a somewhat homomorphic encryption scheme. 
One of the disadvantage of this library is that it 
considers the parameter selection. But this remains a 
complicated and error-prone operation. In fact, in [57, 
Appendix A], the authors note that  
“The BGV implementation in HElib relies on a myriad 
of parameters, some of which are heuristically 
chosen, and so it takes some experimentation to set 
them all so as to get a working implementation with 
good performance”. 
SEAL: A widely used open source library from 
Microsoft that supports the BFV and the CKKS 
schemes. This library is written in C++11 and 
implements the FV encryption scheme [4]. 
It should be noted that this scheme is already 
implemented in [62, 63], both of which use the ideal 
lattice library NFLlib [64]. As opposed to HElib, with 
the SEAL library it is considerably easier to set good 
parameters for the performance and the security of 
the implemented scheme. Microsoft SEAL supports 
the BFV and CKKS schemes. From a development 
perspective, SEAL recently released a .NET standard 
wrappers.  
PALISADE: A widely-used open source library from a 
consortium of DARPA-funded defense contractors 
that provides lattice cryptography building blocks and 
supports leading homomorphic encryption schemes. 
PALISADE supports the BGV, BFV, CKKS, and 
FHEW schemes.  
FHEW/TFHE (Torus-FHE): GSW-based libraries with 
fast bootstrapped operations. TFHE is designed from 
FHEW, which is no longer actively being developed.  
This library implements a generalized version of the 
GSW encryption scheme [65, 66]. The library features 
a very efficient operation bootstrapping, with timings 
that are in the order of fractions of a second on 
average machines. As a drawback, this bootstrapping 
operation has to be applied after computing every 
gate of the circuit. When used for realizing an FHE 
scheme, this library is more efficient than HElib. 
However, for simple tasks requiring small 
computational depth, HElib used as a somewhat 
homomorphic encryption scheme will generally 
perform better. Moreover, TFHE is currently not 
capable of amortizing large SIMD computations as 
well as HElib does. However, it should be noted that 
the code of TFHE is still largely under development, 
and more features (e.g., multithreading) are likely to 
be added soon. [20] 
HeaAn: This library implements the CKKS scheme 
with native support for fixed point approximate 
arithmetic. 

Λ ∘ Λ (pronounced “L O L”): This is a Haskell library 
for ring-based lattice cryptography that supports FHE. 
NFLlib: This library is an outgrowth of the European 
HEAT project to explore high-performance 
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homomorphic encryption using low-level processor 
primitives. 
HEAT: This library focuses on an API that bridges FV-
NFLib and HeLIB. 
HEAT is a HW accelerator implementation for FV-
NFLlib. 
cuHE: This library explores the use of GPGPUs to 
accelerate homomorphic encryption. 
Lattigo: This is a lattice-based cryptographic library 
written in Go. Lattigo also implemented 
the BFV and CKKS and supports secure multiparty 
computation based on the threshold 
or distributed key. [1] 

VI.APPLICATIONS OF FHE 

Fully Homomorphic Encryption schemes can be either 
public key (where the encryptor knows the decryptor's 
public key but not her private key) or symmetric key 
(where the encryptor and decryptor share a key that is 
used for both encryption and decryption). [3] 
Although still slow, homomorphic encryption has been 
proposed for several practical uses. This section 
explores the numerous applications of the various 
flavours of homomorphic encryption. Some require 
fully homomorphic encryption, while others just need 
somewhat homomorphic encryption.  
1- A major application of FHE is to cloud computing. 
Alice can store her data in “the cloud”, for example, on 
remote servers that she accesses via the Internet. 
The cloud has more storage capabilities and 
computing power than does Alice, so when Alice 
needs computations to be done on her data, she 
would like those computations to be done by the 
cloud. However, Alice doesn't trust the cloud. Her data 
might be sensitive (for example, Alice might be a 
hospital and the data might be patients' medical 
records). So, Alice would like the cloud to know as 
little as possible about her data, and about the results 
of the computations. Hence, Alice sends encrypted 
data to the cloud, which can perform arithmetic 
operations on it without learning anything about the 
original raw data, by performing operations on the 
encrypted data. 
2- Consumer Privacy in Advertising 
Though often unwanted, advertising can be useful 
when adapted to user needs, e.g. through 
recommender systems or through location-based 
advertising. However, many users have to do with the 
privacy of their data, in this case their preferences or 
location. There have been several approaches to this 
problem. 
Jeckmans et al. [70] sketch a framework where a user 
wants recommendations for a product. The framework 
is composed around a social network where 
recommendations are based on the tastes of the 
user's friends with the condition of confidentiality. The 
proposed system applies homomorphic encryption to 
allow a user to obtain recommendations from friends 
without the identity of the recommender being 
discovered. 
Armknecht and Strufe [71] presented a recommender 
system where a user gets encrypted 

recommendations without the system being aware of 
the content. This system builds upon a very simple but 
highly efficient homomorphic encryption scheme 
which has been developed for this purpose. This 
allows a function to be computed which chooses the 
advertisement for each user while the advertising 
remains encrypted. 
In another approach to personalized advertising [72] a 
mobile device sends a user's location to a provider, 
who sends customized public notices of sale, such as 
discount vouchers for nearby shops, back to the user. 
Of course, this potentially allows the provider to 
monitor everything about the user's habits and 
preferences. 
However, this problem can be solved by homomorphic 
encryption, provided the advertisements come from a 
third party (or several) and there is no secret 
cooperation with the provider. 
3- Medical Applications 
Naehrig et al. [72] propose a scenario where a 
patient's medical data is (continuously) uploaded to a 
service provider in encrypted form. Here, the user is 
the data owner, so the data is encrypted under the 
user's public key and only the user can decrypt. The 
service provider then computes on the encrypted 
data. These data could consist of things like blood 
pressure, heart rate, weight or blood sugar reading to 
predict the possibility of certain conditions occurring or 
more generally to just remain fully aware of the user's 
health. The main benefit here is to allow real-time 
health analysis based on readings from various 
sources without having to reveal this data to any one 
source. Lauter [73] described an actual 
implementation of a heart attack prediction by 
Microsoft. 
4-  Data Mining 
Mining from large data sets offers great value, but the 
price for this is the user's privacy. While Yang, Zhong 
and Wright [74] are often cited as using homomorphic 
encryption as a solution to this problem, the scheme 
actually uses functional encryption. However, applying 
homomorphic encryption is certainly feasible as a 
solution.  
5- Financial Privacy 
Let us think a framework where a corporation has 
sensitive data and also proprietary algorithms that 
they do not want revealed, e.g. stock price prediction 
algorithms in the financial sector. Naehrig et al. [72] 
propose the use of homomorphic encryption to upload 
both the data and the algorithm in encrypted form in 
order to delegate the computations to a cloud service. 
However, keeping the algorithm secret is not 
something that homomorphic encryption offers, but is 
rather part of obfuscation research.  
The attribute that comes closest in fully homomorphic 
schemes is called circuit privacy, but this only 
guarantees that no information about the function is 
leaked by the output, not that one can encrypt the 
function itself. What homomorphic encryption offers is 
the solution to a related problem. Imagine that a 
corporation A has sensitive data, like a stock portfolio, 
and another company B has secret algorithms that 
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make predictions about the stock price. If A would like 
to use B's algorithms (for a price, of course), either A 
would have to disclose the stock portfolio to B, or B 
has to give the algorithm to A. However, with 
homomorphic encryption, A can encrypt the data with 
a circuit private scheme and send it to B, who runs the 
proprietary algorithm and only sends back the result. 
This result can only be decrypted by A's secret key. 
This way, B does not learn anything about A's data, 
and A does not learn anything about the algorithms 
used. 
6- Forensic Image Recognition 
Fully Homomorphic Encryption (FHE) [8,5,6] is an 
encryption scheme with the special property of 
enabling computing on the encrypted data, while 
simultaneously protecting its secrecy. (see for 
example [55]) Specifically, FHE allows computing any 
algorithm on encrypted input (ciphertexts), with no 
decryption or access to the secret key that would 
compromise secrecy, yet succeeding in returning the 
encryption of the desired outcome. 
Bösch et al. [75] describe how to utilize forensic image 
recognition. Tools similar to this are being used by the 
police and other law enforcement agencies to detect 
illegal images in a hard drive, network data streams 
and other data sets. The police use a database 
containing hash values of  “bad” pictures.  
A major concern is that perpetrators could obtain this 
database, check if their images would be detected 
and, if so, change them. This scheme uses a 
somewhat homomorphic encryption scheme proposed 
by Brakerski and Vaikuntanathan [30] to realise a 
scenario where the police database is encrypted while 
at the same time the company's legitimate network 
traffic stays private. The company compares the 
hashed and encrypted picture data stream with the 
encrypted database created by the police. The service 
provider learns nothing about the encrypted database 
itself, and after a given time interval or threshold, the 
temporary variable is sent to the police. [76] 
7- Fully Homomorphic Encryption can be used to 
query a search engine, without disclosing what is 
being searched for (here, the search engine is doing 
the computations on encryptions of information that it 
doesn't know). Secure search using FHE has been 
the indication example for useful FHE applications 
since Gentry's break through result construction the 
first FHE candidate [5]. Use case examples are 
abundant: secure search for a document matching a 
retrieval query in a corpus of sensitive documents, 
such as private emails, classified military documents, 
or sensitive corporate documents; secure SQL 
SELECT WHERE query to a database, e.g., 
searching for a patient's record in a medical database 
based on desired attributes; secure search engine; 
etc. In all these use cases security means that both 
the searched data (documents, DB, etc.) and the 
search query are encrypted with semantically secure 
FHE, and that the data access pattern reveal no 
information on the searched data or query, as well. 
The secure search problem at the core of all 
previously mentioned use case examples can be 

represented as searching for an encrypted lookup 
value in an encrypted array (the array representing, 
for example, an encrypted table/column in a relational 
database, or a word-by-word encryption of a 
document for full text search). 
8- One of the most popular applications of FHE has 
been Machine Learning. There are many works which 
are focused on Neural Networks and different variants 
of regression. To our knowledge, all works in this line 
are concerned with supervised learning. This means 
that there is a training set with known outcomes, and 
the algorithm tries to build a model that matches the 
desired outputs to the inputs as well as possible. 
When the training phase is done, the algorithm can be 
applied to new instances to predict unknown 
outcomes.  
Machine Learning as an application of FHE was first 
proposed in [72], and subsequently there have been 
numerous works on the subject, to our insight all 
concerned with supervised learning. The most popular 
of these applications seem to be (Deep) Neural 
Networks (see [78], [79], [80], [81], and [82]) and 
(Linear) Regression (e.g., [83], [84], [85] or [86]), 
though there is also some work on other algorithm 
classes like decision trees and random forests ([87]), 
or logistic regression ([88],[89] and [90]). [91] 
Fully homomorphic encryption (FHE) is one of the 
prospective tools for privacy-preserving machine 
learning (PPML), and several PPML models have 
been proposed based on various FHE schemes and 
approaches. Although the FHE schemes are known 
as suitable tools to implement PPML models, previous 
PPML models on FHE such as CryptoNet, SEALion, 
and CryptoDL are limited to only simple and non-
standard types of machine learning models. These 
non-standard machine learning models are not proven 
efficient and accurate with more practical and 
advanced datasets. Previous PPML schemes replace 
non-arithmetic activation functions with simple 
arithmetic functions instead of adopting approximation 
methods and do not use bootstrapping, which enables 
continuous homomorphic evaluations. Thus, they 
could not use standard activation functions and could 
not employ a large number of layers.  
The privacy-preserving issue is one of the most 
practical problems for machine learning recently. Fully 
homomorphic encryption (FHE) is the most 
appropriate tool for privacy-preserving machine 
learning (PPML) to ensure strong security in the 
cryptographic sense and satisfy the communication’s 
conciseness.  
Privacy-preserving machine learning on fully 
homomorphic encryption (FHE) is one of the most 
influential applications of the FHE scheme. 
The maximum classification accuracy of the existing 
PPML model with the FHE for the CIFAR-10 dataset 
was only 77% until now. 
FHE is an encryption scheme whose ciphertexts can 
be processed with any deep Boolean circuits or 
arithmetic circuits without access to the data. The 
security of FHE has been usually defined with 
indistinguishability under chosen-plaintext attack (IND-
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CPA) security, which is a standard cryptographic 
security definition. If the client sends the public keys 
and the encrypted data with an FHE scheme to the 
PPML server, the server can perform all computation 
needed in the desired service before sending the 
encrypted output to the client. Therefore, the 
application of FHE to PPML has been researched 
much until now. 
9- Genome sequencing is now practical on a large 
scale, and the cost of data storage continues to 
decrease. As a result, genome sequencing is now 
commercially available for personalized genetic 
analysis. Genomic data has been used for 
applications in multiple domains including healthcare, 
biomedical research, disease risk tests, and forensics 
[93]. Because we are uniquely identified by our 
genetic code, a privacy breach compromising this 
data could have an unforeseen negative impact upon 
a person’s life. 
Homomorphic encryption has been used for a variety 
of applications in bioinformatics. A large portion of this 
work is driven by the annual iDASH workshop’s 
homomorphic encryption competition tasks. Lauter et 
al. provided some of the first applications of FHE for 
computation over encrypted genomic data [69]. They 
provided algorithms for homomorphic computation 
of basic genomic algorithms such as the Pearson 

goodness-of-fit test, the 𝐷′ and 𝑟2-measures of 
linkage disequilibrium, the Estimation Maximization 
(EM) algorithm for haplotyping, and the 
Cochran-Armitage test for trend. [46] 

VII.CONCLUSIONS 

We live in an era where several billion devices are 
connected to the Internet, and this number will 
continue to grow. This is a consequence of not only 
more people becoming interested in consumer 
electronics but also more sensors and actuators being 
incorporated into everyday electronics, household 
appliances, and the general infrastructure. Therefore, 
there is a growing need for services that let users 
easily store and access personal files. Data that was 
previously stored on paper is being converted to a 
digital file. However, some data needs to be kept 
secret and is not meant for public consumption. But 
most encryption schemes no longer produce the 
correct decrypted value once computations have been 
performed on the data. As we mentioned above, this 
is not the case with homomorphic encryption 
schemes. In this survey, we explain shortly what FHE 
is, describing some of its schemes and applications, 
as well. The interested reader can consult the 
literature in this paper and not only, because there 
exists, already, a very rich one, to expand the 
knowledge in this very attractive area of current 
research. 
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