
Science and Technology Publishing (SCI & TECH) 
ISSN: 2632-1017 

Vol. 6 Issue 5, May - 2022 

www.scitechpub.org 
SCITECHP420236 1220 

Design Of Satellite Orbital Two Line Element To 
Cartesian Position Vector Coordinates 

Transformation Program  
 

 
Okon, Abasiama Colman1 

Department of Computer Engineering 
Akwa Ibom State Polytechnic , Ikot Osurua Ikot Ekpene 

 
Ufot   Okon Nsa2 

Department of Computer Engineering  
Akwa Ibom State Polytechnic , Ikot Osurua Ikot Ekpene 

 
Uduak Etim Udoka3 

Department of Computer Engineering 
Akwa Ibom State Polytechnic , Ikot Osurua Ikot Ekpene 

 
 

Abstract— In this program, the design of satellite 
orbital Two Line Element (TLE) to Cartesian Position 
Vector (CVC) coordinates (X,Y,Z) transformation 
program is presented. The TLE dataset consists of 
eccentricity which is denoted as e; inclination angle with 
unit in degrees and denoted i, right ascension of the 
ascending node with unit in degrees and denoted Ω, 
mean anomaly with unit in degrees and denoted as M, 
argument of the perigee with unit in degrees and 
denoted as ω, mean motion with unit in revolutions per 
day and denoted as n, and revolution number at epoch 
and denoted as 𝑵𝒂𝒑.  The program designed consisted of 
three modules and the detailed algorithm for each of the 
modules is presented. Five cases study satellites were 
used in the study and the output data includes the 
orbital period, the semi major axis, the semi minor axis, 
the eccentric anomaly, and the Cartesian coordinates X, 
Y, and Z for the five case study satellites. The results for 
the five satellites were presented in tables and graphs. 
The results showed that for the five satellites, the 
correlation between E and M is 0.984041669 whereas 
the correlation between E  and e is 0.563807015. In 
essence E is more correlated to M than it is to e. In all, 
the results showed that the absolute value of  X,Y,Z 
coordinates can be as high as the semi major axis of the 
satellite’s orbit. 

Keywords — Coordinates Transformation, Two 
Line Element ,  Orbital Coordinates,  Satellite, 
Cartesian Position Vector Coordinates   

 
1.  Introduction 
Satellites position in orbits are in different ways or formats 
known as coordinate systems 
[1,2,3,4,5,6,7,8,9,10,11,12,13]. Each of the coordinate 
systems presents the location of the satellite in a way that is 
useful for some specific applications or they make it easier 
or better to visualize and apply the coordinates in specific 
analysis and processes. One of the most popular ways of 

representing satellites orbital parameters is the Two Line 
Element (TLE) format [14,15, 16,17, 18,19, 20,21,22,23].  
The TLE is used to capture and store historical data about 
the positions of the satellite at any given instance of time, 
referred to as epoch. However, the TLE format is not 
suitable for certain applications of the satellites data [24,25, 
26,27, 28,29, 30,31, 32]. As such, coordinate 
transformation is needed [33,34, 35,36, 37,38, 39]. 
Accordingly, a program is designed in this paper for the 
transformation of satellites TLE datasets to their 
corresponding Cartesian position vector coordinates 
[40,411,42,43,44,45,46]. The program algorithms are 
presented along with the numerical computation results 
obtained from the program for a selected number of case 
study satellites. The program is implemented using the 
Visual Basic for Application [47,48,49,50,51,52].  
 
2. Methodology 
The program design presented in this paper can read in a 
satellite’s Two Line Element (TLE) dataset and then 
compute the equivalent Cartesian Position Vector (CPV) 
format transformation of the TLE dataset.  
The TLE dataset consists of eccentricity which is denoted 
as e; inclination angle with unit in degrees and denoted i, 
right ascension of the ascending node with unit in degrees 
and denoted Ω, mean anomaly with unit  in degrees and 
denoted as M, argument of the perigee with unit in degrees 
and denoted as ω, mean motion with unit  in revolutions per 
day and denoted as n, and revolution number at epoch and 
denoted as 𝑁௔௣.   

 
The satellite Cartesian coordinates,  x, y and z are computed 
from the listed TLE dataset , namely, e, i, Ω, M, ω, n, and 
𝑁௔௣. However, some other orbital parameters of the satellite 

that are required for the computation of the Cartesian 
coordinates,  x, y and z  are determined from the given TLE 
dataset. Such additional orbital parameters include; the 
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orbital period with unit as days and denoted as T, the semi 
major axis, with unit as km and denoted as a, the semi 
minor axis with unit as km and denoted b and the 
eccentricity anomaly with unit  in degrees is denoted E. 
This set of additional orbital parameters are denoted in this 
paper as secondary orbital elements, namely, T, a, b, and E. 
The computation of T, a and b are based on simple closed-
form analytical expressions. However, the computation of E 
from the values of M and e is performed using iterative 
procedure presented by [53]. The analytical expressions for 
the computation of the satellite Cartesian coordinates,  
x, y and z are given as follows;  

𝐓 ൌ  ଵ

௡
    (1) 

GM ൌ 2.9755364x10ଵହ𝑘𝑚ଷ/𝑑𝑎𝑦ଶ. 

𝐚 ൌ  ට൬ቀୋ୑

ସగమቁ 𝑇ଶ൰ 
య

  (2) 

𝐛 ൌ  ඥ𝐚𝟐ሺ𝟏 െ 𝐞𝟐ሻ𝟐   (3) 

𝐄 ൌ 𝐌 ൅ 𝐞ሺ𝐬𝐢𝐧ሺ𝑬ሻሻ   (4) 
E is determined using iterative method based on the 
algorithm presented by [53]; 
 

𝐱𝟑 ൌ ሺ𝐚ሻ 𝐜𝐨𝐬ሺ𝑬ሻ െ  ሺ𝐚ሻ𝒆    (5) 
𝒚𝟑 ൌ ሺ𝐛ሻ 𝐬𝐢𝐧ሺ𝑬ሻ                  (6) 

𝒛𝟑 ൌ 𝟎                            (7) 
 

𝒙𝟐 ൌ ሺ𝒙𝟑ሻ 𝐜𝐨𝐬ሺ𝝎ሻ െ ሺ𝒚𝟑ሻ 𝐬𝐢𝐧ሺ𝝎ሻ    (8) 
𝒚𝟐 ൌ ሺ𝒙𝟑ሻ 𝐬𝐢𝐧ሺ𝝎ሻ ൅ ሺ𝒚𝟑ሻ 𝐜𝐨𝐬ሺ𝝎ሻ   (9) 

𝒛𝟐 ൌ 𝒛𝟑                             (10)  
𝒙𝟏 ൌ 𝒙𝟐                            (11) 

𝒚𝟏 ൌ ሺ𝒚𝟐ሻ 𝐜𝐨𝐬ሺ𝒊ሻ െ ሺ𝒛𝟐ሻ 𝐬𝐢𝐧ሺ𝒊ሻ    (12) 
𝒛𝟏 ൌ ሺ𝒚𝟐ሻ 𝐬𝐢𝐧ሺ𝒊ሻ  ൅ ሺ𝒛𝟐ሻ 𝐜𝐨𝐬ሺ𝒊ሻ   (13) 

 
𝒙 ൌ ሺ𝒙𝟏ሻ 𝐜𝐨𝐬ሺΩሻ െ  ሺ𝒚𝟏ሻ 𝐬𝐢𝐧ሺΩሻ    (14) 

𝐲 ൌ ሺ𝒙𝟏ሻ 𝐬𝐢𝐧ሺΩሻ ൅  ሺ𝐲𝟏ሻ 𝐜𝐨𝐬ሺΩሻ     (15) 
𝒛 ൌ 𝒛𝟏                              (16)  

 
 
The three modules designed for the computation of the 
satellite Cartesian coordinates, x, y and z  from the TLE 
dataset are as follows; 

i. Algorithm 1  Module1 Input TLE_Compute_XYZ() 

ii. Algorithm 2  Module 2 Compute_E(M, e) 

iii. Algorithm 3  Module 3 Compute_XYZ (e, i, Ω, 

M, ω, n, 𝑵𝒂𝒑, T, a, b, E, x, y, z) 

The detail algorithm for each of the three modules are 
presented next. 
 

i). Algorithm 1  Module1 Input TLE_Compute_XYZ() 

Algorithm 1  The procedure for Module1 Input 
TLE_Compute_XYZ() 

1:Inpute Satellite_name, e, i, Ω, M, ω, n, 𝑁௔௣  

2: T ൌ ଵ

௡
     

3: GM ൌ 2.9755364x10ଵହ  

4:a ൌ  ට൬ቀୋ୑

ସగమቁ 𝑇ଶ൰ 
య

    

5:b ൌ  ඥaଶሺ1 െ eଶሻమ     

6: E ൌModule_Compute E(M,e) // call module 

compute E(M,e) and assign the returned 

value from the module to E 

7: Call Module 3 ComputeXYZ (e, i, Ω, M, ω, n, 

𝑁௔௣, T, a, b, E, x, y, z) 

8: Return E(k) 

10: End Module compute E() 

 
  

ii). Algorithm 2  Module 2 Compute_E(M, e).  

E is determined using iterative method based on the 
algorithm presented by [53] and it is presented as follows; 

 

Algorithm 2  The procedure for Module 2 

Compute_E(M, e) 

1: Input er

2: k =0;  

3: E(k) = M     

4: fE(k) = E(k) – M – e*Sin(E(k)) 

5: dfE(k) = 1 – e*Cos (E(k)) 

6: k = k+1 

7: E(k) = E(k-1) - 
ாሺ௞ିଵሻିெି ௘∗ௌ௜௡ሺாሺ௞ିଵሻሻ

ଵି௘∗஼௢௦ሺாሺ௞ିଵሻሻ
 

8:  if ሺ |𝐸ሺ𝑘ሻ െ 𝐸ሺ𝑘 െ 1ሻ| ൐  |𝑒𝑟|ሻ then Goto step 

4endif 

9: Return E(k) 

10: End Module compute E() 

 

iii). Algorithm 3  Module 3 Compute_XYZ 
(Satellite_name, , e, i, Ω, M, ω, n, 𝑵𝒂𝒑, T, a, 
b, E, x, y, z) 

Algorithm 3  The procedure for Module 3 

Compute_XYZ (Satellite_name, e, i, Ω, M, 

ω, n, 𝑵𝒂𝒑, T, a, b, E, x, y, z) 

1: x3 ൌ ሺaሻ cosሺ𝐸ሻ െ ሺaሻ𝑒      
2: 𝑦3 ൌ ሺbሻ sinሺ𝐸ሻ                  
3: 𝑧3 ൌ 0      
4: 𝑥2 ൌ ሺ𝑥3ሻ cosሺ𝜔ሻ െ  ሺ𝑦3ሻ sinሺ𝜔ሻ      
5: 𝑦2 ൌ ሺ𝑥3ሻ sinሺ𝜔ሻ ൅  ሺ𝑦3ሻ cosሺ𝜔ሻ     
6: 𝑧2 ൌ 𝑧3       
7: 𝑥1 ൌ 𝑥2      
8: 𝑦1 ൌ ሺ𝑦2ሻ cosሺ𝑖ሻ െ ሺ𝑧2ሻ sinሺ𝑖ሻ      
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9: 𝑧1 ൌ ሺ𝑦
10: 𝑥 ൌ ሺ
11: y ൌ ሺ𝑥
12: 𝑧 ൌ 𝑧
13: Outpu

14: Outp

15: Return

16: End M
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4. Results and Discussions 
The detailed TLE dataset were extracted from the NORAD 
Two Line Element (TLE) dataset for the five active 
satellites presented in Figure 1 and the extracted TLE 
parameters are shown in Table 2. The datasets in Table 2 
are then used to compute the orbital period, semi major 
axis, semi minor axis and the eccentric anomaly, as well as 
the Cartesian coordinates X, Y, and Z for the five case 
study satellites and the results are shown in Table 3. 
Furthermore, the graph of the eccentricity anomaly E versus 

mean anomaly (M) and the eccentricity anomaly (E) versus 
eccentricity (e)  were plotted as shown in Figure 2 and 
Figure 3respectively. It was also determined that for the 
five satellites, the correlation between E and M is 
0.984041669 whereas the correlation between E  and e is 
0.563807015. In essence E is more correlated to M. The bar 
chart of the Cartesian coordinates X, Y, and Z for the five 
case study satellites is given in Figure 4.  

 

Table 2  The detail TLE dataset extracted for Figure 1 for the five selected satellites 

1  2  3  4  5  6  7 

Satellite Name e i (deg) Ω (deg) M  (deg) ω (deg) n (rev/day) Nap 

RESURS-DK 1 0.0003328  69.9357 92.3092 4.3598 355.754 15.03269 88454 

CUBESAT XI-V 0.0018036  98.1087 313.958 263.92 96.406 14.64366 88951 

CALSPHERE 1 0.0026876  90.1742 41.1916 71.8743 341.52 13.7383 87274 

LAGEOS 1 0.0045063  109.855 43.8842 295.881 251.702 6.386649 82076 

INMARSAT 3-F1 0.0009065  7.5677 58.0387 261.132 47.6313 0.999871 9578 

 

Table 3  The results of the computation of the orbital period, semi major axis, semi minor axis, the eccentric anomaly, 
the Cartesian coordinates X, Y, and Z for the five case study satellites 

 

0 8 9 10 11 12 13 14

Satellite Name T (day) a (km) b (km) E (deg) X Y Z 

RESURS-DK 1 0.0665217 6,934.96 6,934.96 4.36 -284.15 6,926.82 13.21 

CUBESAT XI-V 0.0682889 7,057.25 7,057.24 263.82 4,898.12 -5,082.55 14.68 

CALSPHERE 1 0.0727892 7,363.99 7,363.96 72.02 3,290.80 2,856.07 5,928.91 

LAGEOS 1 0.1565766 12,271.18 12,271.06 295.65 -9,116.36 -8,052.97 -1,427.15 

INMARSAT 3-F1 1.0001292 42,244.73 42,244.72 207.75 28,744.81 -30,531.89 -5,387.16 

 
 

 
Figure 2 The graph of the eccentricity anomaly, E versus mean anomaly (M)  for the five case study satellites 
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