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Abstract—Modelling of C-band satellite link 
depointing angle impact on parabolic antenna 
gain and effective antenna diameter is studied. 
The focus in this paper is to determine the 
maximum antenna gain for a satellite link without 
a depointing loss, determine the antenna 
depointing loss when there is a misalignment of 
the satellite link antennas, determine the effective 
gain or composite gain for parabolic antenna with 
depointing loss and finally determine the 
percentage the change in the receiver figure of 
merit due to depointing loss. The mathematical 
models for the computation of the stated 
parameters are presented along with numerical 
examples. The study considered only the 6 GHz C-
band satellite link with depointing angle in the 
range of 0 to 1 degree. The results show that that 
the antenna loss increases nonlinearly with 
increase in depointing angle, the composite 
antenna gain, GLθ (dB) decreases nonlinearly with 
increase in depointing angle, and the change in 
antenna gain due to depointing loss, %ΔG 
increases nonlinearly with increase in depointing 
angle.  Also, the depointing loss of about 1° 
results in about 63 % change in the parabolic 
antenna effective diameter and 20.2046 % change 
in the parabolic antenna gain. Also, the change in 
the receiver figure of merit due to depointing loss 
(∆𝐆/𝐓|𝐝𝐁/𝐊) is equal to the depointing loss (𝐋𝛉 ). In 
all, the results show that for the C-band satellite 
link, there are quadratic and cubic nonlinear 
relationships between the depointing angle and 
the antenna depointing loss and percentage 
change in antenna diameter respectively. 

Keywords: Antenna Pointing Loss, C-Band, 
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1. Introduction 
In recent years, wireless communication is increasingly 
becoming ubiquitous with wide applications in diverse 
disciplines, in smart city applications, sensor networks, 
internet of things and many others 
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]. Organisations are 
using it for various forms of local and wide and networks. 
These is due to steady advancements in the wireless 
technologies. Researchers continuously device ways to 
address or accurately estimate and hence mitigate some 
challenges that are associated with wireless signals such as 
propagation loss, spreading loss, negative atmospherics 
effects, diffraction loss and other signal strength degrading 
issues [16,17,18,19,20,21,22,23,24,25]. These negative 
effects can also lead to reduction in the coverage area or 
transmission range of the wireless communication system 
[26,27,28,29,30,31,32,33,34]. In addition to these losses, 
depointing angle is another issue that has significant 
negative impact on the antenna gain and receiver figure or 
merit [35,36,37,38].  
Depointing loss occurs when there is misalignment in the 
line of sight from the transmitting antenna and the receiving 
antenna [35,36,38,39,40,41,42]. In the downlink, the 
depointing loss and rain attenuation can significantly reduce 
the received signal strength [43,44,45,46,47]. Also, due to 
the very far distance of the satellite from the earth station, 
the impact of minor misalignment angle is enormous and 
hence must be avoided at all cost [48,49,50,51,52].  
Accordingly, in this paper, the focus is to provide analytical 
models that can be used to estimate the impact of the 
antenna misalignment error on the key parameters of the 
parabolic dish antenna used in a C-band satellite 
communication link. The ideas presented in this work will 
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enable designers of C-band satellite links to know how 
much of misalignment error the link can accommodate and 
still deliver its required quality of service. 

2. Methodology 
The focus in this paper include the following: determine the 
maximum antenna gain for a satellite link without a 
depointing loss; determine the antenna depointing loss 
when there is a misalignment of the satellite link antennas, 
determine the effective gain or composite gain for parabolic 
antenna with depointing loss and finally the change in the 
receiver figure of merit due to depointing loss. The 
mathematical models for the computation of the stated 
parameters are presented along with numerical examples. 

 
2.1  The Maximum antenna gain, 𝑮𝒎𝒂𝒙 of a parabolic 

antenna 
Maximum antenna gain, 𝐺௠௔௫ of a parabolic antenna with 
effective aperture area, 𝐴௘  is expressed as; 

𝐺௠௔௫ ൌ
 ሺସగሺ஺೐ሻሻ

ʎమ ൌ
Ƞሺସగሺ஺ሻሻ

ʎమ   (1) 

Where Ƞ is the efficiency of the antenna and A is the  actual 
antenna aperture area given as; 
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2.2  Antenna depointing loss, 𝑳𝜽 
The antenna 3 dB beam width , 𝜃ଷௗ஻ is defined as; 
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Where  f is the frequency in Hz, D is the antenna aperture 
diameter and ʎ is the wavelength.   
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Where  f is the frequency in GHz . The antenna depointing 
loss, 𝐿ఏ  is defined as;  
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Where  in Eq 10 f is the frequency in Hz 
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Where in Eq 11   f is the frequency in GHz . 
2.3  Affective antenna gain or composite gain, 𝑮௅𝑮ಽഇሺ೏ಳሻఏ 

of a parabolic antenna with pointing loss, 𝑳𝜽; 
𝑮௅ఏሺௗ஻ሻ ൌ   𝑮𝒎𝒂𝒙ሺ𝒅𝑩ሻ  െ  𝑳𝜽    (12) 
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Determination of the required antenna aperture diameter, 
𝐷௅ఏ and aperture area, 𝐴௅ఏ for a parabolic antenna with 

pointing loss, 𝑳𝜽 that will give equivalent gain as 𝑮௅ఏሺௗ஻ሻ. 

The expressions for  𝐷௅ఏ and 𝐴௅ఏ are as follows; 
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2.4   The receiver figure of merit for a receiver with 
antenna pointing loss, 𝑳𝜽 

The system noise temperature, 𝑇௦௬௦ is expressed as; 

𝑇௦௬௦   ൌ  𝑇஺  ൅ 𝑇ோ  (18) 

where 𝑇஺ is the noise temperature (in Kelvin) of the antenna 
and 𝑇ோ is the noise temperature (in Kelvin) of the receiver 

with antenna gain of 𝐺ோ. The receiver figure of merit, 
ீ
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In decibels per Kelvin,   
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்
  is expressed as; 
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In terms of   𝑮𝒎𝒂𝒙ሺ𝒅𝑩ሻ and 𝑮௅ఏሺௗ஻ሻ, the change in  
ீ

்
  is 

expressed as; 
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Hence, the change in the receiver figure of merit due to 
depointing loss (∆𝐺/𝑇|ௗ஻/௄) is equal to the depointing loss 

(𝐿ఏ ).  
 
3. Results and discussion 
Sample numerical computations were performed for a 
6GHz satellite link with a 3 m parabolic antenna and the 
results are presented in Table 1, Figure 1, Table 2 and 
Figure 2. The results of the maximum antenna gain, 
composite antenna gain, antenna pointing loss and change 
in antenna gain due to depointing loss are shown in Table 1 
and Figure 1. The results in Table 1 and Figure 1 show that 
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the antenna loss increases nonlinearly with increase in 
depointing angle, as follows; 

Lθ = 8.8163(θ)2 -  7x10ିଵହ (25) 
On the other hand, the composite antenna gain, GLθ (dB) 
decreases nonlinearly with increase in depointing angle, as 
follows; 

GLθ (dB) = -8.8163(θ)2 - 2x10ିଵଷ (θ)+ 43.635          (26) 
In addition, the change in antenna gain due to depointing 
loss, %ΔG increases nonlinearly with increase in depointing 
angle, as follows; 

Lθ = 20.205(θ)2 – (1x10ିଵଷ)θ        (27) 
 

 
Table 1 The results of the maximum antenna gain, composite antenna gain, antenna pointing loss and change in antenna gain 

due to depointing loss 

θ 
Maximum antenna 

gain,  Gmax(dB) at D 
= 3 m and f =  6GHz 

Composite antenna 
gain, GLθ (dB) at D = 

3 m and f =  6GHz 

Antenna pointing 
loss, Lθ at D = 3 
m and f =  6GHz 

Change in antenna gain due 
to depointing loss, %ΔG (dB) 

D = 3 m and f =  6GHz 

0.00 43.6352 43.6352 0.0000 0.0000 

0.10 43.6352 43.5470 0.0882 0.2020 

0.20 43.6352 43.2825 0.3527 0.8082 

0.30 43.6352 42.8417 0.7935 1.8184 

0.40 43.6352 42.2245 1.4106 3.2327 

0.50 43.6352 41.4311 2.2041 5.0512 

0.60 43.6352 40.4613 3.1739 7.2737 

0.70 43.6352 39.3152 4.3200 9.9003 

0.80 43.6352 37.9927 5.6424 12.9310 

0.90 43.6352 36.4939 7.1412 16.3658 

1.00 43.6352 34.8188 8.8163 20.2046 
 
 

 
Figure 1 The graph of the maximum antenna gain, composite antenna gain, antenna pointing loss and change in antenna gain 

due to depointing loss versus depointing angle in degrees 
 

Again, the results of the parabolic antenna diameter without 
depointing loss, parabolic antenna diameter with depointing 
loss and change in parabolic antenna diameter due to 
depointing loss are shown in Table 2 and Figure 2. The 

results in Table 2 and Figure 2 show that the  parabolic 
antenna diameter with depointing loss, DGLθ decreases 
nonlinearly with increase in depointing angle, as follows; 

DGLθ(dB)  = 1.76(θ)3 - 3.7784(θ)2 + 0.109(θ) + 2.997       
(28) 

GLθ	(dB)	=	‐8.8163(θ)2 ‐ 2E‐13(θ)+	43.635
R²	=	1

Lθ =	8.8163(θ)2 ‐ 7E‐15
R²	=	1

%ΔG	=	20.205(θ)2 ‐ 1E‐13(θ)
R²	=	1

-5

0

5

10

15

20

25

30

35

40

45

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

A
n

te
n

n
a 

G
ai

n
 , 

D
ep

oi
n

ti
n

g 
L

os
s 

in
 d

B
 a

n
d

 
P

er
ce

n
ta

ge
 C

h
an

ge
 in

 G
ai

n
 (

%
)

Antenna	Depointing	Angle,θ°

Gmax(dB)	at	D	=	3	m	and	f	=		6GHz GLθ(dB)	at	D	=	3	m	and	f	=		6GHz

Lθ	at	D	=	3	m	and	f	=		6GHz %ΔG(dB)	D	=	3	m	and	f	=		6GHz



Science and Technology Publishing (SCI & TECH) 
ISSN: 2632-1017 

Vol. 6 Issue 9, September - 2022 

www.scitechpub.org 
SCITECHP420240 1201 

In addition, the change in parabolic antenna diameter due to 
depointing loss, %ΔD increases nonlinearly with increase in 
depointing angle, as follows; 

%ΔD  = -58.666(θ)3 + 125.95(θ)2 - 3.6327(θ) + 0.0989         
(29) 

In all, the depointing loss of about 1° results in about 63 % 
change in the parabolic antenna effective diameter and 

20.2046 % change in the parabolic antenna gain. Also, the 
change in the receiver figure of merit due to depointing loss 

(∆𝐺/𝑇|ௗ஻/௄) is equal to the depointing loss (𝐿ఏ ). 

 
Table 2 The results of the parabolic antenna diameter without depointing loss, parabolic antenna diameter with 

depointing loss and change in parabolic antenna diameter due to depointing loss 

θ 

Parabolic antenna 
diameter without 

depointing loss, Dgmax  at  
f =  6GHz 

Parabolic antenna diameter 
with depointing loss, DGLθ(dB) 

at  f =  6GHz 

Change in parabolic antenna 
diameter due to depointing loss, 

%ΔD  at  f =  6GHz 

0.00 3.0000 3.0000 0.0000 

0.10 3.0000 2.9697 1.0099 

0.20 3.0000 2.8806 3.9788 

0.30 3.0000 2.7381 8.7303 

0.40 3.0000 2.5503 14.9901 

0.50 3.0000 2.3276 22.4118 

0.60 3.0000 2.0817 30.6085 

0.70 3.0000 1.8244 39.1865 

0.80 3.0000 1.5667 47.7751 

0.90 3.0000 1.3184 56.0520 

1.00 3.0000 1.0872 63.7604 
 

 
Figure 1 The graph of the parabolic antenna diameter without depointing loss, parabolic antenna diameter with depointing loss 

and change in parabolic antenna diameter due to depointing loss versus depointing angle in degrees 
4. Conclusion 
Analytical model for estimating the impact of depointing 
angle on satellite link on parabolic antenna gain and 
effective antenna diameter is presented. The study 
considered only the 6 GHz C-band satellite link with 
depointing angle in the range of 0 to 1 degree. The results 
show that the composite gain of the parabolic antenna 
decreases nonlinearly with increase in depointing angle. 
Generally, there are quadratic and cubic nonlinear 
relationships between the depointing angle and the antenna 

depointing loss and percentage change in antenna diameter 
respectively. 
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