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Abstract—In this research work, a deep learning 
approach using a YOLO convolutional neural 
network (YCNN) algorithm was used to determine 
the facial stress level of drivers for their overall 
safety and that of others. A camera is placed on 
the dashboard that continuously tracks the face of 
the driver’s image at real time and the model 
extracts basic features that helps to determine if 
the driver is drowsy or distracted. An alarm is 
triggered that alerts the driver when his/her face is 
off the car screen. Eye aspect ratio is used to 
calculate when the driver is gradually sleeping off 
or when eyes are closed. 10,000 images of drivers 
were obtained and splitted for the training, testing 
and validation phases in the ratio of 60: 20: 20. 
The results obtained after testing indicates 94% 
accuracy of the model. The model has a wide 
application in the areas of human computer 
communication, facial expression recognition, 
driver fatigue determination and autonomous or 
self - driving vehicles.  
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1. Introduction 

An accident is an unfavorable event that occurs 
inadvertently and unexpectedly, usually resulting in human 
and property damage as well as possible total annihilation 
[1,2,3,4,5,6]. Given the potential repercussions of an 
accident, it could be concluded that a driver would not 
deliberately drive with the intent of causing an accident. 
Again, a driver's license is a basic requirement to drive in 
any country of the world, and would-be drivers are taught 
and tutored about different driving rules, signs and safety 

precautions during the licensing procedure [7,8,9,10,11,12]. 
Despite these attempts, accidents still occur, and the human 
factor is surprisingly attributed as one of the leading causes 
of these accidents. 
Remarkably, car driving is a difficult process in which 
small lack of attention and concentration can lead to 
catastrophic occurrences, and many researchers have 
undertaken researching on drivers’ physical and emotional 
status, which reflects their internal state. However, studying 
and understanding the facial state of drivers in the driving 
environment would help promote and reduce the percentage 
of accidents that is recorded on the road. Statistically, it is 
recorded that in the driving environment, factors like stress, 
fatigue, anger, sadness of drivers contribute to a large 
extent, the increase in the rate of accidents 
[13,14,15,16,17,18,1920]. Therefore systems and models 
need to be built and developed to help the drivers while on 
the steering to avoid loss of life and property. Therefore, in 
this paper, a deep learning approach using a YOLO 
convolutional neural network (YCNN) algorithm was used 
to determine the facial stress level of drivers for their 
overall safety and that of others 
21,22,23,24,25,26,27,28,29,30,31,32]. The system was 
trained and implemented in Google Colaboratory 
environment using an open source framework called tensor 
flow and kerass [33,34,35,36,37,38,39,40].  
During the implementation stage, inside the car, a camera is 
mounted facing the driver. The camera is utilized to record 
driver’s face photos in real-time. The YCNN-based system 
is able to determine from the driver’s face photos if the eye 
of a vehicle driver is closed or when there is drowsiness or 
when the driver is not concentrating on the car wind screen. 
This is done by determining the eye aspect ratio of the 
driver. The model is then programmed to sound an alarm if 
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the values are consistently below the fixed threshold for at 
least 35 photo frames. In this way, the driver can be assisted 
by this system to avoid accidents that are associated with 
drowsiness, sleeping or lack of concentration on the part of 
the driver. 
 
 
2.  Methodology 
The focus in this paper is to develop a deep learning-based 
Convolution Neural Networks (CNN) system that can be 

trained and then used to detect the face stress level of car 
driver and then trigger alarm to alert the driver that he or 
she is sleepy or drowsy or loosing concentration, and hence 
he or she should respond to the alert by stopping the car to 
take some rest or he should concentrate and avoid whatever 
is distracting him or her. The flow diagram used in the 
study is shown in Figure 1. According to the procedure in 
Figure 1, the phases in the model development include: data 
collection, pre-processing phase, network model phase, 
training phase and validation and testing. 

 
Figure 1  Flow diagram of the system model 
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