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Abstract— In this paper, spam filter model for 
SMS using machine learning is presented. The 
dataset used in the study consists of a large text 
file that contains 5574 SMS messages where the 
data on each of the messages combines the 
content of the SMS messages with a label that 
designates the message as either a spam or ham 
(that is, legitimate).  After pre-processing the 
dataset, the following machine learning 
algorithms were used to train the model, namely; 
Naive Bayes, Support Vector Machine (SVM), and 
Logistic Regression algorithm. The model was 
trained using a CPU from Google Colab.  The 
dataset was split into the training set and test set. 
About 20% of the training data were used for 
validation set. After training and validation, the 
model was evaluated on the test set. The metrics 
used for the assessment of the models are 
accuracy, precision, recall, and f1-score. Also, 
confusion matrix was used to measure the 
performance of the machine learning 
classification algorithms. In all, by considering the 
two Natural Language Processing (NLP) 
techniques used , namely; Bag of Words and Term 
Frequency Inverse Document Frequency (TF-IDF), 
the results showed that the machine learning 
models trained using the Bag of Words model 
performed better than those trained using TF-IDF 
model. The best performing learning-Based model 
is the SVM Model with the linear kernel. It has an 
accuracy score of 97.30% and an f1-score of 
0.8929. 

Keywords: Naive Bayes, Natural Language 
Processing, Support Vector Machine, Bag of 
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1. Introduction  

Across the globe, Short Message Service (SMS) 
has become widely adopted and it has become one of the 
dominant communication channels among mobile device 

users [1,2,3,4,5,6,7,8,9,10]. According to the International 
Telecommunication Union (ITU) publication, an average of 
2000 SMS/day and over 14 trillion SMS/ year was 
estimated for the 2013 [11]. The relative low cost of SMS 
services has been attributed to its wide application. 
Notably, SMS does not require internet connection. In 
addition, the ease of use and ease of access of SMS 
message on mobile device has prompted many people to 
prefer SMS over email [12,13,14,15,16,17].  

Due to the teeming population of SMS users, 
SMS-based service attacks rate of has also grown 
tremendously [18,19,20,21,22,23]. Among the various 
attacks on mobile devices, SMS spam attack is the most 
dominant [24,25,26,27]. Specifically, spam SMS message 
is unsolicited and in most cases fake or unwanted text 
messages delivered to a mobile phone. In most cases, the 
spam SMS messages are indiscriminately sent using bulk 
SMS mechanism without the authorization of the recipients 
[28,29,30,31]. 

Furthermore, the mobile phone users are 
increasing engaging in services that require SMS as a 
communication channel. Notable services in this category 
includes, Facebook Messenger [32,33,34], mobile and 
regular banking applications alert/notification system 
[35,36,37,38], iMessage [39,40,41], e-government 
platforms, among others. In response, spam attack has also 
taken advantage of such relevant services to launch spam 
attacks on the subscribers. This has also given rise to 
increase in difficulty of managing SMS spam attacks as 
subscribers finds it difficult in some cases to determine the 
genuine SMS messages. With the increasing incidence of 
SMS spam attacks, and the growing difficulty in 
determining the genuine SMS messages, many subscribers 
are most likely to fall victim to these spam messages.  

Accordingly, this paper is aimed at addressing the 
problem by developing a machine learning-based model for 
detecting spam SMS messages [42,43,44,45,46]. The 
machine learning mechanism can then be interfaced with a 
mobile responsive progressive web app [47,48,49] which 
will enable the mobile device user to detect and delete or 
isolate the spam SMS messages in real-time. In this paper, a 
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case study dataset of SMS messages and three different 
machine learning algorithms are used to train the machine 
learning-based spam filter model, namely; Naive Bayes, 
Support Vector Machine (SVM) [50,51,52,53], and 
Logistic Regression algorithm [54,55,56,57]. Also, two 
Natural Language Processing (NLP) techniques used, 
namely; Bag of Words (BoW) [58,59,60,61] and Term 
Frequency Inverse Document Frequency (TF-IDF) were 
also employed in the model development [62,63,64,65]. 
After training and validation, the model was evaluated on 
test dataset. The two main metrics used for the assessment 
of the models are accuracy and precision. Furthermore, 
other metrics like confusion matrix, as well as recall and f1-
score were also used. 

 

2. Methodology 

2.1 Dataset 

The study utilized a dataset which has a large text file that 
contains several lines of text where each of those lines 
corresponds to a text message. Notably, the dataset contains 
5574 SMS messages,  where the data on each of the 
messages combines the content of the SMS messages with a 

label that designates the message as either a spam or ham 
(that is, legitimate).   

The structure of the dataset is such that there are five 
columns (Figure 1), where the column denoted as v1 is the 
label that shows whether the SMS message is  a “ham” or 
“spam”. The column denoted as v2 is the content of the 
SMS message. The other three columns denoted as 
“Unnamed” are not needed in building the model, hence, 
they are dropped. In order to improve understandability of 
the dataset, the code snippet in Figure 2 is employed to 
drop the unwanted columns and also to rename the retained 
columns; the snapshot of the resulting dataset is given in 
Figure 3.  

Apart from the dataset, other requisite libraries imported 
and used in this project includes; numpy, pandas and 
matplotlib.pyplot. The Pie chart representation of the 
distribution of the dataset into Ham and Spam in data 
components is given in Figure 4. Particularly, the case 
study dataset consist of about 13.0% of spam SMS 
messages and the 86.6% of ham messages. In addition, the 
ham message length fails in the range of around 30-40 
characters while the spam message length is in the range of 
155-160 characters. 

 
Figure 1: Snapshot of the Dataset 

 
Figure 2 The code snippet used to improve understandability of the dataset 
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Figure 3: Snapshot of the Dataset with updated and labelled columns 

 

 
Figure 4: Pie chart representation of the distribution of the dataset into Ham and Spam in data components 

2.2 Data Pre-processing  

Pre-processing of the data was carried out on the dataset. 
First, in the dataset each of the messages is divided 
alphanumeric characters. At this point special characters are 
eliminated from the message text feature space. Also 
removed from the message text are dots and space. When 
there is non-alphanumeric characters existing within a set 
of contiguous characters the entire alphabetic string is 
saved in the memory as token. 
The message content was processed using Regular 
Expressions (Regex). The Regex operation was used to 

make the emails and web addresses, as well as the phone 
numbers and other numbers in the text file to be in a 
uniform encode symbols and also to remove punctuation 
and white spaces and eventually convert all the characters 
to lower case. Also, word stemming was performed which 
is essentially extraction of the base form of the words. The 
BoW model was created for use in the extraction of features 
from the text. At this point, the  BoW  model was trained 
with each of the following machine learning algorithms:  (i) 
Naive Bayes ML Classifier Algorithm (ii) Logistic 
Regression ML Algorithm (iii) Support Vector Machine 
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ML Algorithm. In this paper, the F1 score performance 
metric is used to evaluate the performance of the models. 
Based on its mode of operation, the F1 score is at its best 
with a value of 1 and at its worst with a value of 0. Again, 
in this paper, the metric considers the precision along with 
recall to compute the score.  

Apart from Bag of words model, another Natural Language 
Processing (NLP) used is the Term Frequency Inverse 
Document Frequency (TF-IDF) which is employed to 
assess the importance of the various words in the text. It 
simply identifies how relevant a word is. The output from 
the TF-IDF operation was also trained with each of the 
following machine learning algorithms:  (i) Naive Bayes 
ML Classifier Algorithm (ii) Logistic Regression ML 
Algorithm (iii) Support Vector Machine ML Algorithm. 
Again, model performance was evaluted 

2.4 Model training and performance evaluation 

After pre-processing the dataset, different machine 
learning algorithms were used to train the model. The 
model was trained using a CPU from Google Colab. The 
machine learning algorithms used were Naive Bayes, 
Support Vector Machine (SVM), and Logistic Regression. 
The dataset was split into the training set and test set. About 
20% of the training data were used for validation set. After 
training and validation, the model was evaluated on the test 

set. The two main metrics used for the assessment of the 
models are accuracy and precision. Furthermore, other 
metrics like confusion matrix, as well as recall and f1-score 
were also used. The f1-score is a trade-off between 
precision and recall. 

The confusion matrix gives a count of the number of true 
positives, false positives, true negatives, and false 
negatives. The true positives are the messages the ML 
model correctly classified as spam. The false positives are 
the messages that were wrongly classified as spam. The 
true negatives are the messages that were correctly 
classified as ham, while the false negatives are the 
messages wrongly classified as ham. 

3.  Results and Discussion 

3.1 Results of obtained for the Bag of Words Model  

 

The results on the results on the various performance 
metrics obtained for the bag of words model are shown in 
the Table 1. The accuracy plot for the ML algorithms using 
BoW Model is shown in Figure 5, the precision plot is 
shown in Figure 6, the recall plot is shown in Figure 7 and 
the F1-Score plot for the ML algorithms using Bag of 
Words Model is shown in Figure 8. 

Table 1. The results on Accuracy, Precision, Recall and F1-Score obtained for the BoW model 

ML Algorithm Accuracy Precision Recall F1-Score 

Naive Bayes 87.53% 0.5196 0.8859 0.6550 

Logistic Regression 97.93% 1.0000 0.8456 0.9163 

Support Vector Machine (Linear Kernel) 98.39% 1.0000 0.8792 0.9357 

Support Vector Machine (RBF Kernel) 97.85% 1.0000 0.8389 0.9124 

Support Vector Machine (Poly Kernel) 93.72% 0.9877 0.5369 0.6956 
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Figure 5: Accuracy Plot for ML Algorithms using BoW Model 

 
Figure 6: Precision Plot for ML Algorithms using BoW Model 

 

 
Figure 7: Recall Plot for ML Algorithms using BoW Model 
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Figure 8: F1-Score Plot for ML Algorithms using BoW Model 

 

The result of the confusion matrix for each machine 
learning algorithm is shown in the Table 2. The True 
Positives for the ML Algorithms using BoW Model is 
shown in Figure 9, the False is shown in Figure 10, the 

True Negatives is shown in Figure 11 and the False 
Negatives for ML the algorithms using BoW Model is 

shown in Figure 12. 

Table 2. True Positives, False Positives, True Negatives, and False Negatives result for BoW Model 

ML Algorithm True Positives False Positives True 
Negatives 

False 
Negatives 

Naive Bayes 844 17 132 122 

Logistic Regression 966 23 126 0 

Support Vector Machine (Linear Kernel) 966 18 131 0 

Support Vector Machine (RBF Kernel) 966 24 125 0 

Support Vector Machine (Poly Kernel) 965 69 80 1 
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Figure 9: True Positives for ML Algorithms using BoW Model 

 
Figure 10: False Positives for ML Algorithms using BoW Model 
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Figure 11: True Negatives for ML Algorithms using BoW Model 

 

 
Figure 12: False Negatives for ML Algorithms using BoW Model 

 

3.2 Results of the Term Frequency Inverse 
Document Frequency (TF-IDF) Model 

The results on the various performance metrics obtained for 
the TF-IDF model are shown in the Table 3. The accuracy 
plot for the ML algorithms using TF-IDF Model is shown 
in Figure 13, the precision plot is shown in Figure 14, the 
recall plot is shown in Figure 15 and the F1-Score plot for 
the ML algorithms using TF-IDF Model is shown in Figure 
16. 

The result of the confusion matrix for each machine 
learning algorithm is shown in the Table 4 for the TF-IDF 

Model. The True Positives for the ML Algorithms using 
TF-IDF Model is shown in Figure 17, the False is shown in 
Figure 18, the True Negatives is shown in Figure 19 and the 
False Negatives for ML the algorithms using TF-IDF 
Model is shown in Figure 20. 

In all, by considering the two Natural Language Processing 
(NLP) techniques used , namely; BoW and TF-IDF, the 
results showed that the machine learning models trained 
using the boW model performed better than those trained 
using TF-IDF model. The best performing learning-Based 
model is the SVM Model with the linear kernel. It has an 
accuracy score of 97.30% and an f1-score of 0.8929. 
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Table 3: The results on the various performance metrics obtained for TF-IDF Model 

ML Algorithm Accuracy Precision Recall F1-Score 

Naive Bayes 87.00% 0.5080 0.8523 0.6366 

Logistic Regression 95.34% 0.9709 0.6711 0.7937 

Support Vector Machine (Linear Kernel) 97.30% 0.9542 0.8389 0.8929 

Support Vector Machine (RBF Kernel) 96.68% 0.9828 0.7651 0.8604 

Support Vector Machine (Poly Kernel) 92.38% 1.0000 0.4295 0.6009 

 

 
Figure 13: Accuracy Plot for ML Algorithms using TF-IDF Model 

 

 
Figure 14: Precision Plot for ML Algorithms using TF-IDF Model 
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Figure 15: Recall Plot for ML Algorithms using TF-IDF Model 

 

 
Figure 16: F1-Score Plot for ML Algorithms using TF-IDF Model 

 

 

Table 4: True Positives, False Positives, True Negatives, and False Negatives result for TF-IDF Model 

ML Algorithm True Positives False Positives True 
Negatives 

False 
Negatives 

Naive Bayes 843 22 127 123 

Logistic Regression 963 49 100 3 
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Support Vector Machine (Linear Kernel) 960 24 125 6 

Support Vector Machine (RBF Kernel) 964 35 114 2 

Support Vector Machine (Poly Kernel) 966 85 64 0 

 

 

 
Figure 17: True Positives for ML Algorithms using TF-IDF Model 

 

 

 
Figure 18: False Positives for ML Algorithms using TF-IDF Model 
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Figure 19: True Negatives for ML Algorithms using TF-IDF Model 

 
Figure 20: False Negatives for ML Algorithms using TF-IDF Model 

 

4. Conclusion 

Machine learning-based spam filter model for SMS is 
presented. A case study dataset that consists of a large text 
file that contains SMS messages obtained, pre-processed 
and used in two Natural Language Processing (NLP) 
techniques, namely; Bag of Words and Term Frequency 
Inverse Document Frequency (TF-IDF) to classify the SMS 
message as ham or spam. Specifically, after pre-processing 
the dataset, the following machine learning algorithms were 
used to train the model, namely; Naive Bayes, Support 
Vector Machine (SVM), and Logistic Regression 
algorithm. The model was trained using a CPU from 

Google Colab.  The results showed that the machine 
learning models trained using the Bag of Words model 
performed better than those trained using TF-IDF model. 
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