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Abstract— In this paper, the determination of packet
transmission energy consumption for LoRa-based
sensor node to low earth orbit satellite communication
link is presented. The analysis was conducted for Low
Earth Orbit (LEO) satellites with altitude in the range
of 400 km to 1525 km. Also, the data on SEMTECH
SX1272/73 LoRa transceiver was used and the
spreading factors SF 7, SF 8, SF 9, SF 10, SF 11 and SF
12 were considered with frequency of 868 MHz.
Specifically, the LoRa transceiver parameters
determined are the transmission time, the required
transmitter power and the energy consumption for the
earth-to-satellite communication link. The results show
that for a given spreading factor, the packet
transmission time increases with increase in the payload
size, with a value of 48.86 ms at orbital altitude of 400
km with payload size of 10 bytes to a value of 105.18 ms
at orbital altitude of 400 km with payload size of 50
bytes. There is also a marginal increase in the packet
transmission time with the altitude. The results also
show that for a given payload size and altitude of the
satellite, the packet transmission time increases with
increase in the spreading factor, with a value of 105.2
ms for the SF 7 at orbital altitude of 400 km to a value
of 2309.6 ms for the SF 12 at the same orbital altitude
of 400 km. Also, the required transmitter power
decreases with increase in the spreading factor. On the
other hand, the transmitter energy consumption
decreases from the value of 400 mJ for SF 7 to a value of
2.04 mJ for SF 10 and then increases to 2.54 mJ for SF
11 and further to 2.80 mJ for SF 12. Hence, the energy
consumption is least for the SF 10 configuration of the
LoRa transceiver. The results will enable LoRa-based
sensor network designers in selecting appropriate LoRa
configurations that will ensure effective
communications.

Keywords — Time on Air, Required Transmitter Power,
Transmission Energy Consumption for Lora-Based
Sensor Node

1. Introduction

In the wireless sensor communication industry, sensors are
used in monitoring and controlling systems [1,2,3,4,5,6,
7,8,9, 10,11,12,13,14,15,16]. Generally, the wireless
sensors capabilities determine their applicability and
durability in service. However, the wireless sensor nodes
are usually considered to be resource constrained [17, 18,
19, 20, 21]. This means that the sensor nodes have limited
resources like memory capacity, processing capability,
power supply, sensor battery storage capacity and hence
sensor battery lifespan. Accordingly, there is always need
to estimate the energy demand for the operation of the
sensor so as to determine the battery lifespan [22, 23, 24,
25, 26, 27,28]. The energy demand depends among other
things on the path length, the various propagation losses
and the total transmission time of the data packets [29,30,
31, 32,33,
34,35,36,37,38,39,40,41,42,43,45,46,47,48,49,50,51].
Consequently, in this paper, the focus is to determine the
energy consumption of a battery-powered LoRa-based
transceiver sensor node used for direct transmission of data
packets from an earth station to a for Low Earth Orbit
(LEO) satellite [52,53,54,55,56,57,58,59,60,61,62,63]. The
study also determines the total packet transmission time
which takes into account the propagation time and the
transmission time [64, 65, 66, 67, 68]. The propagation loss
is also determined. The study further compared the energy
consumption, required power and energy for the
transmission of data packets using the five different
popularly implement spreading factors in LoRa transceiver.
The idea presented in this paper will help in determining
the sensor battery lifespan and energy efficiency for a LoRa
transceiver based satellite communication link.

2. Methodology
The energy consumption ( Egc;) for transmitting a data
packet on a satellite link can be determined from the
knowledge of the required transmitter power (PET(dB)) and
the time spent in transmitting a data packet (tpacker)- Both
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parameters require the value of earth station to satellite path
length (dgs). When the earth station and satellite location
coordinates and altitude are given, the path length (dgg)
and elevation angle (6,;) can be computed. Hence, when
the following parameters are given Satellite altitude( H),
satellite orbit radius (R), satellite longitude (LLongS) ,
satellite latitude (L;45), earth radius (Rg), earth station
longitude (LLongE), earth station latitude (L, 4.z) where Rg
= 6378 Km, then ;

Rs = Hg +Rg
1
AL,, = LongE - LongS
2
cos(8,) =
c0s(Lgeg)cos(Lags)cos(ALgy) + sin(Lgeg)sin(Lges)

G3)

The earth station to satellite path length, dgg is defined as;
dis = [(R2 + R — 2R (Re) cos(0,)

“4)
The earth station to satellite elevation angle (0,,;) is defined
as;
_ _1( (Re+Hs\ .
0, = cos ((—dES )sm(ec)>
)

The time spent in transmitting a data packet (tpacket) in this
paper is the sum of the transmission time (t.) and
propagation time (t,), where;

Epacket =t + tp

(6)
Where c is the speed of light (¢ = 3 x 108 m/s) and dg is
in meters.
t. = des
p c
(7

The transmission time (t;) is the time on air which for
LoRa modulation is given as;
tt = (TlpL + NpRr + 425)TS

(®)
. [8PL—4SE+28+16 CRC—20H
np;, = 8+ max ((cell [ +(5F —205) ] (CR +
4)) ) 0> Ts )]
1 ZSF
T=% =2
(10)

SF denotes the spreading factor

npg denotes number of bytes in the preamble and it is
specified in the packet format

BW denotes the bandwidth, which can be 125 KHz, 250
KHz or 500 KHz

PL denotes number of bytes in the payload

H denotes header flag; H = 0 when enabled and H = 1 when
disabled

DE denotes low data rate optimization; D=1 enabled and
DE = 0 when disabled,

CR denotes the coding rate where CR can be 1, 2, 3, or 4.
CRC =1 for uplink and= 1 for down link

For a given required signal to noise ratio represented as
SNRgq, transmitter antenna gain represented as Gg(gp)»
satellite antenna gain represented as Gggr(gp) » satellite
receiver noise temperature represented as Tgys, and link
noise bandwidth represented as B, , the required earth
station transmitter power represented as Pgrigp) is
computed as follows;

Perasy = SNRpg — Ggi(ap) — (GS%;ZB)) + Lgsp +
10(LOG(B,)) — 228.6 (11)
Where Lggp represents the earth station-satellite path loss
which is calculated using the free space propagation loss
model as follows;

Lgsp = 32.45 + 20 Log(f) + 20 Log(dgs)
(12)
Where fis in MHz and dgg in km. Then, the energy
consumption ( Eg¢;) for transmitting a data packet on a
satellite link can be determined as;

Egee = (tp) (10(%»

(13)
3. Results and Discussion

The analysis was conducted for Low Earth Orbit (LEO)
satellites with altitude in the range of 400 km to 1525 km.
Also, the data on SEMTECH SX1272/73 LoRa transceiver
was used and the spreading factors SF 7, SF 8, SF 9, SF 10,
SF 11 and SF 12 were considered with frequency of 868
MHz and the data given in Table 1. The results of the
packet transmission time for SF 7 with payload size of 10
bytes to 50 bytes are given in Table 2 and Figure 1. The
results of the required transmission power for SF 7 with
payload size of 10 bytes to 50 bytes are given in Table 3
and Figure 2 while the results of the required transmission
power for SF 7 with payload size of 10 bytes to 50 bytes are
given in Table 4 and Figure 3. The results show that for a
given spreading factor, the packet transmission time
increases with increase in the payload size, with a value of
48.86 ms at orbital altitude of 400 km with payload size of
10 bytes to a value of 105.18 ms at orbital altitude of 400
km with payload size of 50 bytes. There is also a marginal
increase in the packet transmission time with the altitude,
with a value of 48.86 ms at orbital altitude of 400 km with
payload size of 10 bytes to a value of 56.77 ms at orbital
altitude of 1465.37 km with payload size of 10 bytes. This
is due to the propagation time component of the packet
time. The results in Table 3 and Figure 2 show that required
power for the transmission of the packet increases with
increase in satellite altitude. The results in Table 4 and
Figure 3 show that transmitter energy consumption
increases with increase in satellite altitude. It also increases
with increase in the payload size.
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Table 1 The data on SEMTECH SX1272/73 LoRa transceiver for bandwidth of 125 KHz

SF BW (kHz) Sensitivity (dBm) SNRrq (dB)
7 125 -124.0 -7.0
8 125 -127.0 -10.0
9 125 -130.0 -13.0
10 125 -133.0 -16.0
11 125 -135.0 -18.0
12 125 -137.0 -20.0

Table 2 The results of the packet transmission time for SF 7 with payload size of 10 bytes to 50 bytes
Tpacket | Tpacket | Tpacket | Tpacket | Tpacket
Altitude of| (ms)for | (ms)for | (ms)for | (ms)for | (ms)for
Satellite | spreading | spreading | spreading | spreading | spreading
Orbit, Hs |factor, SF7|factor, SF7|factor, SF7|factor, SF7|factor, SF7
(km) |with PL= 10jwith PL= 20with PL= 30jwith PL= 40jwith PL= 50
Bytes Bytes Bytes Bytes Bytes
400.00 48.86 64.22 79.58 89.82 105.18
459.19 49.43 64.79 80.15 90.39 105.75
518.37 49.96 65.32 80.68 90.92 106.28
577.56 50.47 65.83 81.19 91.43 106.79
636.75 50.95 66.31 81.67 91.91 107.27
695.94 51.42 66.78 82.14 92.38 107.74
755.12 51.86 67.22 82.58 92.82 108.18
814.31 52.30 67.66 83.02 93.26 108.62
873.50 52.72 68.08 83.44 93.68 109.04
932.68 53.13 68.49 83.85 94.09 109.45
991.87 53.53 68.89 84.25 94.49 109.85
1051.06 53.91 69.27 84.63 94.87 110.23
1110.24 54.29 69.65 85.01 95.25 110.61
1169.43 54.67 70.03 85.39 95.63 110.99
1228.62 55.03 70.39 85.75 95.99 111.35
1287.81 55.39 70.75 86.11 96.35 111.71
1346.99 55.74 71.10 86.46 96.70 112.06
1406.18 56.09 71.45 86.81 97.05 112.41
1465.37 56.43 71.79 87.15 97.39 112.75
1524.55 56.77 72.13 87.49 97.73 113.09

—&— Tpacket (mS) for spreading factor, SF7 with PL= 10 Bytes
—@— Tpacket (mS) for spreading factor, SF7 with PL= 20 Bytes

140.00 —— Tpacket (mS) for spreading factor, SF7 with PL= 30 Bytes
130.00 —@— Tpacket (mS) for spreading factor, SF7 with PL= 40 Bytes
120.00 —0— Tpacket (mS) for spreading factor, SF7 with PL= 50 Bytes

110.00 .__.__._‘_._—.-—O—H——.—.—._._._H_._._._.
100.00
© 80.00

70.00 H_._._H_._._._.—o—f-+-+—0—0—*—*—°—*

60.00

50.00 H__._.__‘__.__._.—.—O—Q—H_.—.—.—._.—.—.

40.00
350 450 550 650 750 850 950 1,050 1,150 1,250 1,350 1,450 1,550

Altitude of Satellite Orbit, Hs (km)
Figure 1 The graph of the packet transmission time versus altitude for SF 7 with payload size of 10 bytes to 50 bytes

Tpacket (mS) for spreading factor,
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Table 3 The results of the required transmission power for SF 7 with payload size of 10 bytes to 50 bytes

Requred Transmitter power (mW) for
spreading factor, SF7

Altitude of Power (mYV) Power (mW) Power (mW) Power (mYV) Power (mW)
Satellite for spreadingffor spreadingffor spreadingffor spreading|for spreading
Orbit. Hs factor, SF7 | factor, SF7 | factor, SF7 | factor, SF7 | factor, SF7

(kn',1) with PL= 10 | with PL= 20 | with PL= 30 | with PL= 40 | with PL= 50

Bytes Bytes Bytes Bytes Bytes
400.00 2417 24.17 24.17 24.17 24.17
459.19 27.87 27.87 27.87 27.87 27.87
518.37 31.60 31.60 31.60 31.60 31.60
577.56 35.37 35.37 35.37 35.37 35.37
636.75 39.16 39.16 39.16 39.16 39.16
695.94 42.99 42.99 42.99 42.99 42.99
755.12 46.86 46.86 46.86 46.86 46.86
814.31 50.75 50.75 50.75 50.75 50.75
873.50 54.67 54.67 54.67 54.67 54.67
932.68 58.63 58.63 58.63 58.63 58.63
991.87 62.62 62.62 62.62 62.62 62.62
1051.06 66.65 66.65 66.65 66.65 66.65
1110.24 70.70 70.70 70.70 70.70 70.70
1169.43 74.79 74.79 74.79 74.79 74.79
1228.62 78.91 78.91 78.91 78.91 78.91
1287.81 83.06 83.06 83.06 83.06 83.06
1346.99 87.24 87.24 87.24 87.24 87.24
1406.18 91.46 91.46 91.46 91.46 91.46
1465.37 95.70 95.70 95.70 95.70 95.70
1524.55 100.00 100.00 100.00 100.00 100.00

120 —®—Power (mW) for spreading factor,
—&—Power (mW) for spreading factor,

110

Power (mW) for spreading factor,
100 —g—power (mW) for spreading factor,
90 —®—Power (mW) for spreading factor,
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Figure 2 The graph of the required transmission power versus altitude for SF 7 with payload size of 10 bytes to 50 bytes
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Table 4 The results of the transmitter energy consumption for SF 7 with payload size of 10 bytes to 50 bytes

Energy Energy Energy Energy Energy
Altitude (mlJ) for (m)J) for (mlJ) for (mlJ) for (mlJ) for
of spreading | spreading | spreading | spreading | spreading
Satellite factor, factor, factor, factor, factor,
Orbit, Hs | SF7 with SF7 with SF7 with SF7 with SF7 with
(km) PL=10 PL=20 PL=30 PL=40 PL=50
Bytes Bytes Bytes Bytes Bytes
400.00 1.18 1.55 1.92 2.17 2.54
459.19 1.38 1.81 2.23 2.52 2.95
518.37 1.58 2.06 2.55 2.87 3.36
577.56 1.78 2.33 2.87 3.23 3.78
636.75 2.00 2.60 3.20 3.60 4.20
695.94 2.21 2.87 3.53 3.97 4.63
755.12 2.43 3.15 3.87 4.35 5.07
814.31 2.65 3.43 4.21 4.73 5.51
873.50 2.88 3.72 4.56 5.12 5.96
932.68 3.11 4.02 4.92 5.52 6.42
991.87 3.35 4.31 5.28 5.92 6.88
1051.06 3.59 4.62 5.64 6.32 7.35
1110.24 3.84 4.92 6.01 6.73 7.82
1169.43 4.09 5.24 6.39 7.15 8.30
1228.62 4.34 5.55 6.77 7.57 8.79
1287.81 4.60 5.88 7.15 8.00 9.28
1346.99 4.86 6.20 7.54 8.44 9.78
1406.18 5.13 6.53 7.94 8.88 10.28
1465.37 5.40 6.87 8.34 9.32 10.79
1524.55 5.68 7.21 8.75 9.77 11.31

—e—Energy (m]) for spreading factor, SF7 with PL= 10

Bytes

=
[\

Bytes

U=
[e]

Bytes

[ee]

Energy Demand (m]) for
spreading factor, SF7

350 450 550 650 750 850

—&— Energy (m]) for spreading factor, SF7 with PL=20

—&—Energy (m]) for spreading factor, SF7 with PL= 30

950 1050 1150 1250 1350 1450 1550

Altitude of Satellite Orbit, Hs (km)

Figure 3 The graph of the transmitter energy consumption versus altitude for SF 7 with payload size of 10 bytes to 50 bytes

The results of the required packet transmission time for SF
7 to SF 12 with payload size of 50 bytes are given in Table
5 and Figure 4 while the results of the required transmission
power for SF 7 to SF 12 with payload size of 50 bytes are
given in Table 6 and Figure 5. Also, the results of the
transmitter energy consumption for SF 7 to SF 12 with
payload size of 50 bytes are given in Table 7 and Figure 6.

The results in Table 5 and Figure 4 show that for a given
payload size and altitude of the satellite, the packet
transmission time increases with increase in the spreading
factor, with a value of 105.2 ms for the SF 7 at orbital
altitude of 400 km to a value of 2309.6 ms for the SF 12 at
the same orbital altitude of 400 km. Also, the results show
that for a given payload size and altitude of the satellite, the
required transmitter power decreases with increase in the
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spreading factor, with a value of 24.2 mW for the SF 7 at
orbital altitude of 400 km to a value of 1.2 mW for the SF
12 at the same orbital altitude of 400 km. As such, the
power required by the transceiver operating in the SF 12 is
lower than the power required for SF 11. The SF7 has the
highest power requirement for the given 50 bytes payload
size. On the other hand, the results in Table 7 and Figure 6
show that for the given payload size of 50 bytes, the

transmitter energy consumption was least for SF 10 .The
transmitter energy consumption decreases from the value of
400 m)J for SF 7 to a value of 2.04 mJ for SF 10 and then
increases to 2.54 m)J for SF 11 and further to 2.80 mJ for SF
12. Hence, the energy consumption is least for the SF 10
configuration of the LoRa transceiver.

Table 5 The results of the packet transmission time for SF 7 to SF 12 with payload size of 50 bytes

Tpacket

Altitude (ms) for Tpacket Tpacket Tpacket Tpacket Tpacket

of spreading (ms) for (ms) for (ms) for (ms) for (ms) for
Satellite factor, spreading | spreading | spreading | spreading | spreading

Orbit, Hs | SF7 with factor, factor, factor, factor, factor,

(km) PL=50 SF8 SF9 SF10 SF11 SF12
Bytes
400.0 105.2 182.2 336.4 624.1 1322.5 2309.6
459.2 105.7 182.8 336.9 624.7 1323.0 2310.2
518.4 106.3 183.3 337.4 625.2 1323.6 2310.7
577.6 106.8 183.8 338.0 625.7 1324.1 2311.2
636.7 107.3 184.3 3384 626.2 1324.6 2311.7
695.9 107.7 184.8 338.9 626.6 1325.0 2312.2
755.1 108.2 185.2 339.4 627.1 1325.5 2312.6
814.3 108.6 185.7 339.8 627.5 1325.9 2313.0
873.5 109.0 186.1 340.2 627.9 1326.3 2313.5
932.7 109.4 186.5 340.6 628.4 1326.7 2313.9
991.9 109.8 186.9 341.0 628.8 1327.1 2314.3
1051.1 110.2 187.3 341.4 629.1 1327.5 2314.7
1110.2 110.6 187.7 341.8 629.5 1327.9 2315.0
1169.4 111.0 188.0 342.2 629.9 1328.3 2315.4
1228.6 111.4 188.4 342.5 630.3 1328.6 2315.8
1287.8 111.7 188.8 342.9 630.6 1329.0 2316.1
1347.0 112.1 189.1 343.2 631.0 1329.3 2316.5
1406.2 112.4 189.5 343.6 631.3 1329.7 2316.8
1465.4 112.8 189.8 343.9 631.7 1330.0 2317.2
1524.6 113.1 190.1 344.3 632.0 1330.4 2317.5
2500

—&— Tpacket (mS) for spreading factor, SF7 with PL= 50

—&— Tpacket (mS) for spreading factor, SF8

Tpacket (mS) for spreading factor, SF9

*—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0

*—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0
*—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0

@ 2000 Bytes
g
N/
=
(3]
§ 1500
(5]
E
=)
2
2 1000
[}
]
(=9
=
)
S 500
0
350 450 550 650 750

850 950 1050 1150 1250 1350 1450 1550

Altitude of Satellite Orbit, Hs (km)

Figure 4 The graph of the packet transmission versus altitude for SF 7 to SF 12 with payload size of 50 bytes
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Table 6 The results of the required transmission power for SF 7 to SF 12 with payload size of 50 bytes

Altitude of Power (mW)
satellite for spreading|Power (mW)|Power (mW)|Power (mW)|Power (mW)|Power (mW)
Orbit. Hs factor, SF7 ffor spreadingffor spreadinglfor spreadingfor spreadingffor spreading
! with PL= 50 | factor, SF8 | factor, SF9 |factor, SF10 |factor, SF11|factor, SF12
(km)
Bytes
400.0 24.2 12.1 6.1 3.0 1.9 1.2
459.2 27.9 14.0 7.0 3.5 2.2 1.4
518.4 31.6 15.8 7.9 4.0 2.5 1.6
577.6 35.4 17.7 8.9 4.5 2.8 1.8
636.7 39.2 19.6 9.8 4.9 3.1 2.0
695.9 43.0 21.5 10.8 5.4 3.4 2.2
755.1 46.9 23.5 11.8 5.9 3.7 2.3
814.3 50.7 25.4 12.7 6.4 4.0 2.5
873.5 54.7 27.4 13.7 6.9 4.3 2.7
932.7 58.6 29.4 14.7 7.4 4.7 2.9
991.9 62.6 314 15.7 7.9 5.0 3.1
1051.1 66.6 334 16.7 8.4 5.3 3.3
1110.2 70.7 354 17.8 8.9 5.6 3.5
1169.4 74.8 37.5 18.8 9.4 5.9 3.7
1228.6 78.9 39.5 19.8 9.9 6.3 4.0
1287.8 83.1 41.6 20.9 10.5 6.6 4.2
1347.0 87.2 43.7 21.9 11.0 6.9 4.4
1406.2 91.5 45.8 23.0 11.5 7.3 4.6
1465.4 95.7 48.0 24.0 12.0 7.6 4.8
1524.6 100.0 50.1 25.1 12.6 7.9 5.0

—e— Power (mW) for spreading factor, SF7 with PL=50

100

o~ o ©
o o o

Requred Transmitter power (mW)
N
o

0

Bytes

Power (mW) for spreading factor, SF9

—&— Power (mW) for spreading factor, SF8

350.0 450.0 550.0 650.0 750.0 850.0 950.0 1050.0 1150.0 1250.0 1350.0 1450.0 1550.0

Altitude of Satellite Orbit, Hs (km)

Figure 5 The graph of the required transmission power versus altitude for SF 7 to SF 12 with payload size of 50 bytes
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Table 7 The results of the transmitter energy consumption for SF 7 to SF 12 with payload size of 50 bytes

Energy

Altitude (mJ) for Energy Energy Energy Energy Energy

of spreading (m)J) for (mlJ) for (m)J) for (m)J) for (mlJ) for
Satellite factor, spreading | spreading | spreading | spreading | spreading

Orbit, Hs | SF7 with factor, factor, factor, factor, factor,

(km) PL=50 SF8 SF9 SF10 SF11 SF12
Bytes

400.00 2.54 2.21 2.04 1.90 2.54 2.80
459.19 2.95 2.55 2.36 2.19 2.93 3.23
518.37 3.36 2.90 2.68 2.49 3.32 3.66
577.56 3.78 3.26 3.00 2.79 3.72 4.10
636.75 4.20 3.62 3.33 3.09 4.12 4.54
695.94 4.63 3.98 3.66 3.39 4.53 4.98
755.12 5.07 4.35 3.99 3.70 4.93 5.43
814.31 5.51 4.72 4.33 4.01 5.34 5.88
873.50 5.96 5.10 4.67 4.32 5.76 6.34
932.68 6.42 5.48 5.02 4.64 6.18 6.80
991.87 6.88 5.87 5.36 4.96 6.60 7.26
1051.06 7.35 6.26 5.72 5.28 7.03 7.73
1110.24 7.82 6.65 6.07 5.60 7.46 8.20
1169.43 8.30 7.05 6.43 5.93 7.89 8.68
1228.62 8.79 7.45 6.79 6.26 8.33 9.16
1287.81 9.28 7.86 7.15 6.59 8.77 9.64
1346.99 9.78 8.27 7.52 6.93 9.21 10.13
1406.18 10.28 8.68 7.89 7.27 9.66 10.62
1465.37 10.79 9.10 8.27 7.61 10.11 11.11
1524.55 11.31 9.53 8.65 7.96 10.57 11.61

14.00

—&— Energy (m]) for spreading factor, SF8

12.00

mJ)

©
o
S

Energy Demand (
£
o o
o o

e
o
S

Bytes

Energy (m]) for spreading factor, SF9

—&—Energy (m]) for spreading factor, SF7 with PL=50

350.00 450.00 550.00 650.00 750.00 850.00 950.001050.001150.001250.001350.001450.001550.00

Altitude of Satellite Orbit, Hs (km)

Figure 6 The graph of the transmitter energy consumption versus altitude for SF 7 to SF 12 with payload size of 50 bytes
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Figure 7 The bar chart of the transmitter energy consumption for satellite altitude of 400 km for SF 7 to SF 12
with payload size of 50 bytes

4. Conclusion
The approach for determination of the transmission time,
the required transmitter power and the energy consumption
of a LoRa transceiver used in earth to satellite
communication link is presented. The analysis focused on
the low earth orbit satellite and for small payload sizes of
less about 50 bytes. The study compared the variations in
the transmission time of packets, as well as the power and
energy demand with the spreading factors of the LoRa
transceiver. The results show that the transmission time
increases with the spreading factor, the transmission power
decreases with the spreading factor, while the transmission
energy consumption is least at the middle SF of 10 and is
highest at the lowest and the highest SF values of 7 and 12.
The results will enable LoRa-based sensor network
designers in selecting appropriate LoRa configurations that
will ensure effective communications.
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