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Abstract—Currently additive manufacturing 
(AM) is still primarily used for prototyping and 
modeling.  However, with the increase in available 
materials and more advanced machines, AM is 
becoming a production process in which ready-to-
ship products are being manufactured, therefore it 
is important to effectively use the material in AM 
machines.  One way this can be accomplished is 
by modifying the infill structure that is used.  This 
proceeding reports the on the testing and 
statistical analysis of the compressive strength of 
chopped carbon fiber reinforced nylon specimens 
manufactured on an Ultimaker 2+ 3D printer.  
Using the honeycomb, truss, and gyroid designs 
are examples of bioinspiration, or the use of 
design in nature for solving engineering 
problems.  

Keywords—bioinspiration,additive manufacturing, 
technology management, 3d printing, rapid 
prototyping, compressive modulus of elasticity, 
compressive proportional limit, maximum 
compressive stress 

 

I.  INTRODUCTION 

Solving problems is an everyday occurrence.  
Problems happen, effective technology management 
professionals can solve them.  When an exoskeleton is 
too heavy for a patient to even benefit from, additive 
manufacturing (AM) can be used to help solve this 
problem through bioinspiration using lightweight infill 
patterns and densities without compromising strength. 

A. Additive Manufacturing 

In the 1980s, several researchers were exploring 
new ways of producing parts through AM, which is 
officially defined as the “process of joining materials to 
make parts from 3D model data, usually layer upon 
layer, as opposed to subtractive manufacturing and 
formative manufacturing methodologies” [1].  Some of 
the potential advantages of AM that the French 3D 
printing company Sculpteo [2] names are: the ability to 
manufacture complex designs not possible through 
subtractive manufacturing, produce less waste 
material, improve designs before making costly tooling, 
and integrating conformal cooling channels more 
efficiently.  Additionally, Bikas, Stavropoulos, and 
Chryssolouris [3] discuss the increased “design 
freedom” that AM offers by allowing engineers to 

redesign multi-part assemblies into one or two parts.  
Some of the industries that are using AM technology 
are the automotive, medical, and aerospace, to name 
a few.  One reason for its use in the medical field is its 
high level of customization; take for instance dental 
implants, where a dental professional can 3D scan a 
patient’s jaw and produce an implant that will fit 
perfectly. 

In AM, objects are generally not printed as a solid 
object, they are made up of a shell with an internal 
latticework, referred to as infill, which is selected by the 
user and often has a pattern that is optimized to 
shorten print time and/or lightweight the part, while 
maintaining structural integrity [4].  Furthermore, 
Chacóna, Caminerob, García-Plazab, and Núñezb [5] 
explain that the printing parameters, two of which are 
the infill density and pattern, have a significant effect 
on the quality and strength of 3D printed objects.  This 
research tested the hypothesis that bioinspired infill 
designs are more efficient, meaning that they have a 
higher compressive modulus of elasticity, compressive 
proportional limit, and maximum compressive stress at 
equal density, than a standard grid infill design. 

B. Bioinspiration 

Although human genius through various inventions 
makes instruments corresponding to the same 
ends, it will never discover an invention more 
beautiful, nor more ready nor more economical 
than does nature, because in her inventions 
nothing is lacking, and nothing is superfluous. 
 
These are the words of Leonardo da Vinci back in 

the early 1500s [6].  Da Vinci recognized that design is 
all around us in the natural world.  Biomimicry is 
defined as the technical emulation of biological forms, 
processes, patterns, and systems [7]; other terms that 
are used (often interchangeably) are bioinspiration, 
and biomimetics.  Wegst, Bai, Saiz, Tomsia, and 
Ritchie [8] further explain that, “today, scientists and 
engineers continue to be fascinated by the distinctive 
qualities of the elegant and complex architectures of 
natural structures.” 

One of the inspirations that has come from the 
living world is the honeycomb design.  This 
multicellular hexagonal configuration is a very effective 
design and has been heralded as the most efficient 
shape to fill a two-dimensional shape plane since at 
least around 36 BC when Marcus Terentius Varro 
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butterfly wing as a natural gyroid with “two unequal 
sub-volumes, the largest filled with air and the smallest 
filled with cuticle.”  These air and cuticle filled 
structures are called biophotonic nanostructures and 
produce the iridescent structural colors that are seen 
on the butterfly’s wings [18,19].  The “reflectance 
spectrum is determined by submicrometre structural 
variations causing interference, diffraction or scattering 
creating structural, physical colors” [20]. 

II. METHODOLOGY 

A. Design of Experiment and Data Collection 

A 2 x 4 independent factorial design was used to 
test the hypotheses for this quantitative experimental 
research project (see Fig. 4).  Field [21] states that this 
design is used when “there are several independent 
variables or predictors and each has been measured 
using different entities (between groups).” 

B. Variables and Data Recording Information 

A 2 x 4 independent Factorial ANOVA was used to 
test the hypotheses.  Table 1, shows the variables that 
were used in the statistical analysis.  It contains two 
nominal dichotomous independent variables, and three 
nominal continuous dependent variables (measured in 
N/mm2).  The two independent variables are infill 
design and infill density.  The dependent variables are 
the compressive modulus of elasticity, the 
compressive proportional limit, and the maximum 
compressive stress; these three dependent variables 
were calculated from the same data output that was 
produced in the compression testing of each 
specimen.  The two factors and levels can be seen in 
Table 2. 

Fig. 5 and 6 show the test specimens, with walls 
and top layers removed, in order to show the infill 
designs and infill densities.  The 3D Truss infill design 
is not a standard infill design and thus was developed 
in 3DXpert for SolidWorks 14.0, see Fig. 6. 

Two sets of ten test specimens and one set of five 
of each infill design and density were printed at a time, 
e.g., prints of ten and five A1s, A2s, B1s, B2s, and 
etcetera.  A total of 200 test specimens were printed, 
25 of each infill and density combination: 25 – A1s, 25 
– A2s, 25 – B1s, 25 – B2s, 25 – C1s, 25 – C2s, 25 – 
D1s, and 25 – D2s.  Fig. 8 show an example of build 
plates with ten and five specimens; the finished test 
specimens were each affixed with barcode labels for 
tracking purposes.  As previously stated, an Ultimaker 
2+ was used to print all 200 test specimens (see Fig. 
7). 

III. DISCUSSION OF THE RESULTS 

A. Strength Comparison by Infill Design and 
Density 

The following data, in Fig. 9 and 10, is a general 
comparison showing the mean compressive modulus 
of elasticity, compressive proportional limit, and 
maximum compressive stress across the tested infill 
densities and infill designs.  A visual observation of 
Fig. 9 (Image a) suggests that if the compressive 
modulus of elasticity is of primary concern for a given 
part to be produced by AM, the 2D Grid infill design 
might be the first choice for the technology 
management professional at 30% or 50% infill density, 
followed by the 2D Honeycomb design, then the 3D 
Truss design, and lastly the 3D Gyroid design (if one is 
only selecting from the four designs used in this study).  
If the compressive proportional limit is of primary 
concern for a given part to be produced by AM, the 
data shown in Fig. 9 (Image b) suggests that the 2D 
Grid infill design might be the first choice for the 
technology management professional, followed by the 
2D Honeycomb design, then the 3D Gyroid design, 
and lastly, the 3D Truss design (if one is only selecting 
from the four designs used in this study).   
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strategies and plans to identify, develop, and 
implement innovative AM-based solutions. 

The implications of these results are important to 
technology management professionals, and users of 
AM equipment for hobby, prototyping, production, or 
research.  As previously discussed, one of the great 
advantages of AM is that users can easily change the 
infill density and infill design of parts to be produced.  
In the automotive and aerospace fields for instance, 
light weighting of parts is of great concern for fuel 
efficiency.  Moreover, with the rise of more costly 
materials such as carbon fiber and metals, the choice 
of infill design and infill density can have a very pricy 
impact on the part to be produced. 

Returning to the scenario in the introduction of an 
exoskeleton that is too heavy for a patient to even 
benefit from, consider the following study of an 
exoskeleton being designed and developed for an 
infant.  Babik et al. [23] tested the feasibility and 
effectiveness of an exoskeleton for improving the arm 
movements of an 8-month-old with arthrogryposis (a 
disorder where infants are born with significant muscle 
contractures and weakness across multiple joints).  
The exoskeleton that was used in the study was 
produced with AM equipment, using strong but 
lightweight polymer material, making it very helpful to 
the infant.  Tools such as these can assist with play 
and movement in young infants during this very crucial 
developmental phase.  Two crucial variables that a 
technology management professional must set for 
producing products, such as exoskeletons, on AM 
equipment are infill density and infill design.  Hopefully, 
this study will be welcomed as a unique combination of 
infill designs, infill densities, and their effect on the 
compressive modulus of elasticity, compressive 
proportional limit, and maximum compressive stress of 
parts produced with NylonX polymer material. 
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