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Abstract— In this paper, optimum sizing and 
placement of distributed generation using ant 
colony optimization approach is presented. The 
ACO mathematical model development is 
presented along with the flow diagram used for 
the implementation of the ACO on a case study 11 
kV feeder line in Uyo Akwa Ibom State Nigeria.  
The bus dataset of the 11 kV feeder showed total 
active power of 15930 kW along with total reactive 
power of 7715.29 kVar.  Under the condition of no 
distributed generation (DG), the feeder has about 
13.23716259 % of active power loss and 
10.06491007 % of reactive power loss.  The ACO 
sizing and optimal placement of DGs on the 11 kV 
feeder were simulated with 30% DG penetration 
and the results showed that the total real power 
loss decreased from 2108.68 kW in the base case 
to 1050 kW when the DG is 1, 998 kW when the DG 
is 2 and 996 kW when the DG is 3. Similarly, the 
total reactive power loss reduced from 776.537 
kVar to 387 kVar when the DG is 1, 368 kVar when 
the DG is 2 and 367 kVar when the DG is 3. 
Accordingly, with the implementation of the ACO 
algorithm, the real power was reduce by 50.21% 
when the DG is 1   to 52.06% when the DG is 2 and 
52.76% when the DG is3. Again, with the 
implementation of the ACO algorithm, the reactive 
power was reduce by 50.16% when the DG is 1 to 
52.10% when the DG is 2 and 52.73% when the DG 
is 3. In all, ACO can be effectively be used in the 
optimum sizing and placement of DGs in the 
power distribution networks. 

Keywords— Distributed Generation, Ant 
Colony Optimization, Optimum Sizing Of 
Distributed Generation, Voltage Deviation Index, 
Optimal Placement of Distributed Generation  

 

1. INTRODUCTION 

The integration of DG into radial power 
distribution systems has been identified as a promising 
solution that enables the power grids to meet the ever-
increasing demand of electricity while increasing the 
reliability and cost efficacy of power grids [1,2,3]. To 
maximise the benefits, optimal sizing and placement of DG 
units must be determined [4,5]. Specifically, the appropriate 
sizing and placement of DG units play an important role in 
reducing power losses and maintaining voltage stability of 
the power grid [5,6,7]. On the other hand, if the sizing and 
placement of the DG units are not determined 
appropriately, it can increase power losses, voltage 
instability, and even lead to power outages [8,9]. Therefore, 
it is very important to determine the optimal solution that 
minimises power losses and maintains voltage stability 
[10,11]. 

Notably,  DG sizing and placement can be 
performed, for instance, through classical optimisation 
techniques, which might fail to tackle the problem’s 
nonlinear and complex nature, it might also neglect the 
power losses and voltage stability issues when in tandem, 
thereby missing out on the optimal solution [12,13,14]. 
Equally, metaheuristic techniques, such as Ant Colony 
Optimization (ACO) and Particle Swarm Optimisation 
(PSO), have shown promising outcomes in addressing 
complex optimisation problems [15,16].Acordingly, in this 
paper, application of ACO technique to the problems of DG 
sizing and placement for loss minimization and voltage 
stability is presented. 
 
 
2. METHODOLOGY 
2.1 Mathematical Model Development of Ant Colony 
Optimization (ACO) algorithm 

The Ant Colony Optimization (ACO) algorithm is 
a metaheuristic optimization technique that was first 
introduced by Marco Dorigo in his Ph.D. thesis in the 
1990s (Ünal et al., 2013). The algorithm is inspired by the 
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3.2 The parameters of the radial distribution network 
used in the study 

The study used 11kV feeder network located in Aka in 
Uyo metropolis of Akwa Ibom State Nigeria. The feeder 
network is radial and the single-line diagram is presented 
in Figure 2.  The bus dataset of the 11 kV feeder is given 
in Table 1 which showed total active power of 15930 kW 
along with total reactive power of 7715.29 kVar.  The 
summary of the baseline parameters of the 11 kV feeder 

under the condition of no distributed generation (DG) is 
shown in Table 2. The parameter values in Table 2 are 
load flow analysis results obtained using the 
backward/forward sweep applied to the 11 kV network 
with no DG. The parameters values in Table 2 show that 
without DG, about 13.23716259 % of active power loss is 
witnessed along with 10.06491007 % of reactive power 
loss.   

 

Table 1: Bus load data for the AKA 11 kV feeder 

Bus 
ID 

Bus Location Bus Type Voltage 
(kV) 

Angle 
(Deg) 

Transformer Rating
(kVA) 

Active Power Demand 
 (kW) 

Reactive Power Demand  
(kVAR) 

1 Injection 
Substation 

Slack Bus 11 0 - - - 

2 
IBB Road S/S 

Load Bus 11 0 300 270 130.77 

3 
Akpa Ube S/S 

Load Bus 11 0 500 450 217.94 

4 
MTN S/S 

Load Bus 11 0 100 90 43.59 

5 
No Name 

Load Bus 11 0 300 270 130.77 

6 
Wema Bank S/S 

Load Bus 11 0 300 270 130.77 

7 
Johnson St S/S 

Load Bus 11 0 500 450 217.94 

8 
Ndiya St S/S 

Load Bus 11 0 300 270 130.77 

9 Everyday Food 
S/S 

Load Bus 11 0 100 90 43.59 

10 
FSTC S/S 

Load Bus 11 0 500 450 217.94 

11 
Ukana Offot S/S 

Load Bus 11 0 500 450 217.94 

12 Andy Umana St 
S/S 

Load Bus 11 0 300 270 130.77 

13 
GOTV S/S 

Load Bus 11 0 100 90 43.59 

14 
Crunchies S/S 

Load Bus 11 0 200 180 87.18 

15 Aka Junction 
S/S 

Load Bus 11 0 500 450 217.94 

16 
Sacred Heart S/S 

Load Bus 11 0 300 270 130.77 

17 Water Resources 
S/S 

Load Bus 11 0 300 270 130.77 

18 
Nung Oko I S/S 

Load Bus 11 0 300 270 130.77 

19 
MTN S/S 

Load Bus 11 0 100 90 43.59 

20 
Market Road S/S 

Load Bus 11 0 500 450 217.94 

21 
Ayara S/S 

Load Bus 11 0 500 450 217.94 

22 ST. Christopher 
S/S 

Load Bus 11 0 300 270 130.77 

23 
Nung Oko II S/S 

Load Bus 11 0 500 450 217.94 

24 Incubation 
Centre S/S 

Load Bus 11 0 200 180 87.18 

25 
Nung Atai S/S 

Load Bus 11 0 300 270 130.77 

26 
Womi Estate S/S 

Load Bus 11 0 500 450 217.94 

27 Aka Community 
School I S/S 

Load Bus 11 0 300 270 130.77 

28 
SPG Hotel S/S 

Load Bus 11 0 100 90 43.59 

29 Aka Community 
School II S/S 

Load Bus 11 0 300 270 130.77 

30 Aka Community 
School III S/S 

Load Bus 11 0 300 270 130.77 

31 Aka Idak Eyop 
S/S 

Load Bus 11 0 500 450 217.94 

32 Idak Eyop 
Mpiak Ring 

Road S/S 

Load Bus 11 0 300 270 130.77 
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33 
Multichoice S/S 

Load Bus 11 0 100 90 43.59 

34 Samuel Peter 
S/S 

Load Bus 11 0 200 180 87.18 

35 Mbietebe 
Primary School 

S/S 

Load Bus 11 0 300 270 130.77 

36 
Edet Effiong S/S 

Load Bus 11 0 300 270 130.77 

37 
Obio Etoi S/S 

Load Bus 11 0 300 270 130.77 

38 
Mbietebe II S/S 

Load Bus 11 0 300 270 130.77 

39 Mbietebe Market 
S/S 

Load Bus 11 0 300 270 130.77 

40 Redemption 
Academy 

Avenue S/S 

Load Bus 11 0 500 450 217.94 

41 Mbietebe Nna 
Umiang S/S 

Load Bus 11 0 300 270 130.77 

42 
Mbiokporo S/S 

Load Bus 11 0 500 450 217.94 

43 
Ima Abasi S/S 

Load Bus 11 0 500 450 217.94 

44 Ikot Akpa Abia I 
S/S 

Load Bus 11 0 300 270 130.77 

45 Ikot Akpa Abia 
II S/S 

Load Bus 11 0 300 270 130.77 

46 
Idak Editan S/S 

Load Bus 11 0 300 270 130.77 

47 
Ikot Iko I S/S 

Load Bus 11 0 300 270 130.77 

48 
Ikot Iko II S/S 

Load Bus 11 0 300 270 130.77 

49 Afaha Ikot Akpa 
Edu S/S 

Load Bus 11 0 300 270 130.77 

50 
Oboyo Ikot S/S 

Load Bus 11 0 200 180 87.18 

51 
Itak Nyayah S/S 

Load Bus 11 0 300 270 130.77 

52 
Nsiak Ndap S/S 

Load Bus 11 0 300 270 130.77 

53 Emmanuel 
Umoren S/S 

Load Bus 11 0 300 270 130.77 

54 
Udo Kang S/S 

Load Bus 11 0 500 450 217.94 

55 
PDP S/S 

Load Bus 11 0 300 270 130.77 

56 
Atan Offot S/S 

Load Bus 11 0 300 270 130.77 

 
 

    15930 7715.29 
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