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Abstract—The occurrence of system disturbance
is a major problem in a large interconnected
power system with the consequence of creating
an intra-area oscillating modes. These modes
which are basically decaying sinusoids are also
termed as the transient responses of the power
system network to excitation. Proper and
immediate identification of any dangerous
oscillating mode occasioned by disturbances
such as equipment failure would ensure both
security and stability of interconnected power
system. Consequently, the power utility must then
deploy the correct damping control methods. Both
rapid detection of critical and significant changes
due to the breakdown of equipment and the
estimation of modal parameters for an
interconnected power system networks, which is
observed to be in a stable and normal operation
are basically the two major areas of focus as far
as power system monitoring is concerned. This
article presents a comprehensive review of
advanced monitoring methods for quickly
detecting modal deterioration, with a focus on
short-time frame detection. We discuss various
techniques, including energy-based detectors
(EBD), Kalman innovation detectors (KID) and
optimal individual mode detectors (OIMD), and
highlight their strengths and limitations. The
review aims to provide a valuable resource for
researchers and engineers working on power
system monitoring and control. The practical
applications of this research include; improved
system reliability, reduced risk of catastrophic
failures and enhancement of overall grid
resilience.
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1. INTRODUCTION

Large interconnected power distribution networks,
occasioned by global evolution of the economy of the
electrical utility industry, has resulted in particular
emphasis being laid on reliable and secure operations
[1]. To facilitate security and reliability of operations,
wide-area observation and control are needed in large
interconnected power systems. Several wide-area

monitoring strategies have been established in order
to meet up with these requirements [2],[3]. Within the
distribution network, the power system can be
monitored at various locations. This is one of the key
strategies including employing Global Positioning
System (GPS) which can be used to synchronize the
acquired information [4].

Modal analysis being a mathematical tool is
deployed in power system to carefully study small
signal stability and inter-area oscillations. It highlights
a clear technical solution used to attenuate inter-area
oscillations and how such solution can be applied to a
specific scenario. It equally determines the critical and
precise network parameters that should to be known
in order to adequately diagnose any eventual inter-
area oscillation [5]. Monitoring the situation and
condition of power system stability is very critical for
power distribution network with particular emphasis on
inter-area oscillations whereby this stability, to a large
extent depends on all inter-area oscillations being
positively damped. These are oscillations that
correspond to transient power flows among plants
within a specific area in the large interconnected
power system [6]. Monitoring and control of these
oscillations is very critical and has particularly proven
to be challenging compared with monitoring and
control of oscillations associated with a single
generator [6].

Inter-area oscillation appears when generators on
one side of the connection line starts to oscillate
against generators on the other side resulting in
periodic electric power transfer along the line. They
are observed in large power systems connected by
weak tie lines though can affect smaller systems too
[5]. In the transient ability of the system to stabilize
post disturbance, it is the “ring-down” time of the
damping factor that is of consequence. Therefore, to
minimize power flows between the generation clusters
and reduce the associated stresses within the
generation and transmission infrastructure, it is
important that the transient time is stable and quick.
As a consequence, there has been much work done
regarding estimation of damping factor in large
distributed power systems. Existing research works
have deployed Eigen analysis [7] as well as Prony’s
analysis [8]. For proper and accurate estimation of
damping factor, a large amount of relevant data is
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needed [8]. Therefore, conventional damping factor
estimation techniques are not suitable for rapidly
detecting sudden changes in modal damping. This
work addresses these drawbacks by explaining a
number of new monitoring methods which can provide
signs of detrimental modal parameter change with
very short data records in minutes.

2. EXISTING MODAL ESTIMATION METHODS

Traditional modal estimation strategies are
techniques which focus on accurately estimating
modal parameters (frequency damping and mode
shape) under steady state conditions. Power systems
have become large and interconnected with some
complexities thereby affecting the efficiency of the
system in terms of vulnerability to system instability.
This challenge has made it a necessity to perform
reliable detection of system disturbances from modal
oscillation data records, whether it is those from single
isolated  disturbance or continuous random
disturbances.

2.1 Eigen analysis of Disturbance Modes

Eigen Analysis is a technique of decomposing a
system into its fundamental modes of oscillation. It
provides information on mode shapes, frequency,
system dynamics and it is used to analyze overall
system behavior [9]. In carrying out Eigen analysis of
a power system, a system matrix is formed and the
QR algorithm is deployed to compute the eigenvalues
of the matrix [9],[10]. Thereafter, relevant parameters
of the modal oscillation can be determined from the
eigenvalues. This strategy has proven to be very
reliable and has been adopted globally by different
power utilities. Sadly, this method is not best fitted for
large interconnected power systems, which is the
reason for its various modifications by researchers.
Uchida and Nagao made modification in eigen
analysis by proposing the use of the “S matrix
method”[7]. In this method, it is assumed that the
dynamics of power systems can be linearly
approximated with a set of differential equations of the
form, x = Ax, where x is the vector state of the system
and A is the system matrix. Byerly et al. equally
developed the best-known algorithm called; Analysis
of Essentially Spontaneous Oscillations in Power
Systems (AESOPS). The advantage of the algorithm
is that it does not require the explicit formation of the
system state matrix [11]. The challenge of the
AESOPS effort is the deficiency it has in analyzing
very large interconnected systems.

2.2 Prony’s Method of Spectral Analysis

Exponentially damped sinusoids in a signal can
have its parameters estimated by deploying Prony’s
method. Also, it can be used to analyze power system
oscillations such as those caused by faults and
disturbances [10][12]. Though, it was delayed until the
advent of digital computer, this method originated in
an earlier century with the capacity to be practically
implemented.

Researches on the use of this technique for
oscillation modal parameter estimation have been
conducted [13], with many providing deep insights into
the concept. Ideally, the effectiveness of Prony’s
technique is only guaranteed whenever the noise
power is negligible. Gomez Martin and Carrion Perez
introduced some extensions in working with noisy
data with the application of Prony’s method. This was
done by using a moving window in both forward and
backward directions [14]. This position was further
collaborated by Kannan and Kundu [15].

2.3 The Sliding Window derivation

Basically, the method used the rate of deterioration
of the Fourier transform as a rectangular window
slides to determine the damping factor of the mode
[16]. The result showed good correlation compared to
conventional techniques. However, the limitation was
the restrictions on the length of the window that could
be used. Such restriction was necessary to avoid
errors occasioned by the interference from the
superposition of the positive and negative frequency
components [16],[17]. This interference was
formulated by the large side lobes of the spectral sinc
function introduced by the rectangular windowing. In
line with the research, the window lengths only had
certain discrete values, at which the interference
turned out to be zero. The challenge was that the
window length was dependent upon the modal
frequency. Therefore, this frequency had to be
correctly and initially estimated before implementation
of windowing.

2.4 Auto-correlation Techniques

Since the auto-correlation function of a system
triggered by white noise reveals the impulse response
of that system, then obviously the auto-correlation
function of the differentiated power system
disturbance output should be the impulse response of
the power system. This means that it will take the form
of a sum of complex exponentials, then the modal
parameters can be determined using Prony analysis
[18].

Auto-correlation techniques were further examined
by [10] through modeling disturbances using noise to
depict customer’s load variations and an impulse to
connote a disturbance thereby determining resonant
frequencies and mode shape. The simulation results
though provided concrete relationships to a known
system’s eigenvalue, mode shape and resonant
frequencies, it did not make any reference to the
several drawbacks of mode spacing [10].

2.5 Kalman Filter Innovation Techniques

This strategy is a very critical and optimal linear
estimator; which has been used severally in different
areas such as; state and parameter estimation,
stochastic models etc. There are many variations of
Kalman filter for non-linear systems including
unscented and extended Kalman filters. In this review,
emphasis is on the Kalman filter innovation which is
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defined as the difference between the measured
output and the estimated output. Provided the
assumed model parameters are valid, it is well known
that the innovation from a Kalman filter is spectrally
white. But under fault conditions, the innovation
sequence should demonstrate large systematic trends
since the model will no longer connote the physical
system [10]. A number of Kalman filter innovation
methods designed for the detection of system fault,
diagnosis of dynamic systems and estimation of least
square are discussed in [19],[20]. This review
describes how the Kalman filter model can be used to
estimate the system output. Sudden adverse changes
in the model parameters can be detected by
monitoring the whiteness of the innovation else the
innovation sequence is equivalent to the initial
excitation under normal plant conditions [10].

2.6 Polynomial Phase Estimation Strategies

To have an insight into the frequency and phase
trajectory of a component or mode that conforms to a
polynomial model, it is quite important that the
polynomial phase coefficients be determined. Through
the direct Maximum Likelihood method, a solution to
the problem can be achieved by obtaining estimates
of these parameters. But, as discussed in [10], the
implementation of this strategy is very cumbersome
and difficult since it requires a P-dimensional search.
As a way of overcoming this challenge, various
authors have designed other methods of solving this
problem [10], [21]. These strategies deploy multi-
linear transforms with the capacity to reduce the
search requirements from a P-dimensional search to a
more computationally efficient P-one-dimensional
search.

2.7 Conclusion on Existing Modal Estimation
Methods

Even with the progress made so far regarding
modal parameter estimation techniques, the reality
which many authors have established is that there is
no individual technique that can capture all the unique
scenarios that arise in practice. Each strategy has its
own merits and applications, and provides a different
situation and view into dynamic system behaviour.
With recent and rapid advancement in technology
regarding power systems, the need to consistently
improve algorithms of oscillation modal estimation is
very critical. Reliable detection of sudden changes in
modal oscillations is also quite important so much so
that damaging failures can be totally prevented. To
date, research on optimal procedures for such
detection has been modest. In addition to these
traditional strategies, recent research has focused on
rapid detection techniques as discussed in
subsequent sections.

3. RAPID DETECTION OF MODAL DAMPING
DETERIORATION

This modern strategy focuses on quickly detecting
changes in modal damping due to structural
degradation and uses machine learning or signal

processing techniques to analyze real-time data with
emphasis on speed and adaptability [5][10]. A long
data record of an hour or more of data is required to
produce accurate estimates when adopting standard
modal parameter estimation methods. If there is a
sudden and seriously problematic change of damping,
this is obviously a long time to wait. Unlike accurate
estimation of the modes which requires long time
scales, detection of sudden deterioration from a
familiar quiescent point can be carried out in much
shorter time scales, for instance, a minute. It is
important to note that sudden changes in system
modes can be easily detected through energy
changes. However, to be able to make an important
decision on the possibility of any change occurring, a
statistical characterization of the quiescent system
energy must be well established. Immediately the
statistical characterization has been formulated, the
benchmark or thresholds for rapid detection of modal
deterioration may be set in a manner as to provide an
alarm bench mark with an established confidence
level.

Rapid detection of deteriorating modal
damping carefully examines the energy of the
systems signs in its entirety. It provides a simple
method to identify rapid modal deterioration
within a system. In single mode system, any
subsequently detected deterioration naturally
represents the mode deterioration. This is
opposed to a multi-mode system, where
information that there had been a damping
deterioration would be provided though, without
mode identification [10]. 3.1 The Power System
Model in the Quiescent State

In formulating energy characterization of the power
system, there is dare need to fully understand system
behavior. In [18],[22], the power systems are assumed
to be in normal operation and therefore excited by
multiple quasi-continuous random disturbances. Such
disturbances are triggered by load changes. Once
excited, each of the disturbances is then damped
according to the modal resonances of the power
system. This kind of situation can be modelled with a
single continuous random background noise exciting a
filter whose resonances are characteristic of the
power system [18].

fractal (1/f)
excitation noise,
white noise, w(n) y(n)

_

Fig. 1. Model for quasi-continuous modal
disturbances in a power system

The model in Fig 1 can assist in the formulation of
an equivalent model as shown in Fig 2. Now, if the
output of the power system is differentiated as
indicated in figure Fig 2, the resulting signal, y(n), can
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be considered to have been obtained from a white
noise based excitation of the power system filter, h(n).
It is important that the measured output, x(n), be taken
as the angle of the generator cluster at the
measurement point, with respect to the steady state
(i.e.50Hz/60Hz) angle. The measurement point to
extract the angle of the generator cluster is obtained
according to the procedure in [4]. With the power
system model properly established, a statistical
characterization of the system energy will be
formulated in the following section.

»in)

Fig. 2. Equivalent model for quasi-continuous
modal oscillations in power system

3.2 Statistical Characterization of the System
Energy

The knowledge of the power system model
established in [18] is used to generate a statistical
system characterization. A formula is derived for a
probability density function (PDF) of the energy y(n)
under quasi-stationary operating conditions. The
statistical characterization of the energy y(n) enables
an accurate threshold to be set so alarms can be
raised if the energy deviates significantly from these
quasi-stationary operating conditions. The types of
techniques described in [18], help to determine these
operating conditions. Since the detection condition is
for large detrimental change, then the False Alarm
Rate (FAR) for detection is usually set fairly low, for
instance 1% or lower. Such a low false alarm rate
helps to facilitate the minimization of unwanted false
alarms. Continuous and consistent monitoring of the
system energy is necessary once an alarm has been
triggered. Also, sequential data windows can be
collected and a statistical analysis with respect to the
PDF undertaken. It must be noted that corrective
action by the power system utility would be induced
due to repeated alarms occasioned by consistently
high energy readings.

In developing the PDF for the energy in y(n), the
model in fig. 2 must be taken in account, hence,
1 —2,,—xN3 -2-2
L H@I e 2 HO) 20
=@+ HIZe M H@) 202 |1
xx |[H(N/2)|"2e™*¥|[H(N/2)| 2072
Where * signifies convolution.

Establishing the 1% false alarm rate is obtained
through the cumulative summation of the PDF area
until the 99% point is determined. The result of the
PDF can then be deployed for detection of change.

3.3 Method of Implementation

To be able to apply real data to the energy
detection strategy, a long term estimator is required to
provide an estimation of the quiescent modal values.
First, the long term estimator establishes estimates for
the system transfer function, so that an estimated
impulse response can be determined. With this
knowledge, an approximation of the variance of the
excitation signal, w(n) in fig.1, can be estimated. Once
the system transfer function, h(n), and the excitation
variance (] , have been estimated then the expected
energy PDF can be formulated. This formulated PDF
then enables a threshold to be set considering a
suitable false alarm rate. This threshold can be
adjusted based on the periodically updated long term
estimate.

Differentiation of the power system output signal
considering the model in fig. 2, is the foremost step in
the process for simultaneously performing long term
estimation, generating the energy estimate, setting
threshold and alarming. The long term modal
estimator used in this review is based on [10],[23] and
applies a greater than one hour data window to the
differentiated output signal, y(n), and generates a
system transfer function in the Laplace domain. Both
individual modes and an estimated impulse response
can be determined through the application of the
traditional inverse Laplace transform method of partial
fraction expansion. Once an estimate of the transfer
function is determined, an estimate of the excitation
spectrum may be found according to:

= y(k)

w(k) = 0 2)

Where y(k) and H(k) denote the DFTs of y(n) and
h(n) respectively, evaluated at bin, k. Then the
estimate of the excitation variance ie noise power is
estimated as:

o = - TN Iw(k)I? (3)

The two system characteristics, [1 [Jand H [Ik[]
are then established and can be deployed to generate
the required system PDF. A suitable threshold for
alarm can be set with respect to a desired FAR once
the system PDF is established.
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Fig. 3. Short Term Energy Detection

Data in red denotes past data used to formulate
long term estimates
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4. RAPID DETECTION OF CHANGES IN
INDIVIDUAL MODES IN MULTI-MODAL POWER
SYSTEMS

Rapid detection of changes in individual modes
carefully monitors all modes to determine where
critical adverse change is taking place in the power
system. Whenever and wherever sudden deteriorating
damping is experienced, rapid detection of
deteriorating modal damping examines the energy of
the system’s signal in its entirety providing sufficient
information in a single mode power system. However,
in multi-modal power systems, it would be very
necessary to highlight specifically which particular
mode(s) may be experiencing detrimental damping
conditions. This would help the power utilities to
administer early corrective action in the correct
manner. Because of the need to have more specific
modal identification, this section introduces a new
strategy for rapidly detecting individual modal
deterioration in large interconnected multi-modal
power systems. Any sudden detrimental change of an
individual mode is detected using strategies derived
from optimal detection theory. A statistical
characterization of a mode’s test statistic is used to
establish reliable thresholds for detection of individual
mode changes. To enable individual monitoring of
modal damping conditions, the power system is again
assumed to be excited by on-going random
disturbances, corresponding to such things as load
changes [18].

4.1 Stochastic Power System Model

From fig.1, once y(n) is obtained through
differentiation of the measured output then the filter
impulse response, h(n), can be estimated using long
term estimators [18]. From the system impulse
response, estimate of the power of the white noise
excitation, w(n), may also be determined. A long term
parametric estimator such as Prony’s method [12],
may be used to determine the filter impulse response,
h (n) and its transfer function H (z), once it is assumed
that the power system has been in a quasi-stationary
operating environment for a long period of time (This
assumption is necessary for the purpose this section).
Subsequently, the individual modal contributions that
combine to formulate H (z) may be determined using
partial fraction analysis. Therefore, for any given
mode i, the transfer function Hi (z) as well as the
impulse response hi (n) can be determined.

4.2 Application of the Optimal Detection
Strategy

To enable the detection of negative changes to
individual modes, the theory of optimal detection of
random signals is deployed. The implementation of
the optimal detector is as follows: let the system
impulse response, h (n), be considered to be the sum
of hy (n) and h; (n), with hy (n) representing the mode
of interest, and hy(n) representing the sum of all the
other modal components of h(n) . Then the output,
y(n) is considered to have two components, y4 (n) and
y2 (n) , with y; (n) being the output of the mode of

interest and y,(n) being the output due to the
remaining modes. Defining the observed signal as
y(n), and the reference signal as y4(n), the procedure
for the generation of the optimal detection statistic is
depicted in Fig. 4 [10]. It involves the whitening of both
the power spectral density (PSD) of the reference
signal |H, (k)|* and the P'SD of the observed signal
|H, (k)| followed by cross-correlating. The whitening
filter transfer function is the inverse of the discrete
Fourier transform of h, (n). N samples are assumed in
the observation.

Observation Whiten
PSD

e 2
a 2 Hy (k)
¥ (%) 1
Cross-correlate Threshold
e &
}} Detect
Reference Whiten
PSD | 2

(k)

. Fig. 4. Generation of the optimal detection
statistics

Setting the threshold for appropriate detection is
quite important. First is to determine the Probability
Density Function (PDF) of the cross correlated output.
The availabilty of the PDF enables accurate
thresholds to be set so that one can create alarms if
the modal response deviates significantly from the
normal operating conditions. Since the main focus of
this section is the rapid detection of large detrimental
modal change as opposed to monitoring minute
changes, thresholds are typically set to yield False
Alarm Rates (FARs) of 1% or less. In practical
application, the monitoring process would ideally
involve the application of the detection algorithm to all
the modes individually and simultaneously. In other
words, an n-mode power system would require n
parallel detectors to monitor each mode. The
computational overhead does not provide any serious
barrier to monitoring all of the individual modes. This
is because the detection algorithm can be
implemented fairly rapidly. Once an alarm has been
raised, it is important to consistently monitor the
modes. A series of sequential data windows are
collected and statistical comparisons are made with
the stationary condition PDFs. Corrective action will
be triggered regarding the deteriorating mode once
readings are consistently high.

4.3 Statistical Details of Individual Mode
Detection

In specifying the optimal detector for an individual
mode, the following quantities are defined using
discrete Fourier transformation, ¢:

y(m) =Y (k) =W3I)H (k) (4)
hy(n) = H,(k) (5)

h,(n) = H,(k) (6)

y1(n) = Yi(k) =W (k)H, (k) (7)
y2(n) = Y, (k) = W (k)H, (k) (8)
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To detect a change in the mode of interest;
choosing Y (k) as the frequency domain reference
signal, the remainder of the frequency domain
observation, Y, (k), will becomes the interference
signal. Therefore, in line with a standard optimal
detection theory, a whitening filter is created to whiten
the interference:

Hwh (k) = Hy,-1 (k) (9)

Again, consistent with standard optimal detection
theory, the whitening filter is applied to both the
reference and observation signals. The corresponding
PSDs are then determined as follows:

PSDyps (k) = | X (k)llewh(k)lz =
|W (k)lleobs(k)llewh(k)lz (10)

PSDyes (k) = | Hy(k) |21 Hyn ()IZE {IW (K)I?} (11)
Where E {} denotes the expected value.

Now cross-correlate (10) and (11) to obtain the
detection statistic n shown in Figure 4:
n= YN PSDypes (k)PSDyys (k). (12)

k=-N/2

To practically apply the detection statistic in the
detection process, a threshold level must be
determined. A probability density function (PDF) of the
detection statistic is required to be able to accurately
set the threshold based on the PDF at a desired level
of confidence.

4.4 Statistical Characterization of the Detection
Statistic n

The formulation of Mode 1 detection statistic PDF,
being the mode of interest, is as follows: To derive the
detection statistic PDF, (12) can be expanded using
(10) and (11) to give:

n=

W2 EQW (10123 1Hy (1P H ()12 Hyr (O 12IW (k)2
(13)

Re-written as;

W2 122 W () (14)

Where Z (k) is defined as:

Z (k) = |Hy(OIIH (Ol Hyp, (k)12 JEW (K[} (15)

It must be noted clearly that the expression in (14)
contains W(k) which is a complex Random Variable
(RV) with real and imaginary parts. Furthermore, the
squared magnitude of |W (k)|? is:

[W(k)|? = Real {W (k)}? + Imag {W (k)}? (16)

Where Real { } and Imag{ } denote the real and
imaginary parts respectively. It is assumed that the
variance of w(n) is o®. Then W(k) is a complex

Gaussian RV with variance, %2 [10]. Then the left hand
side of (16) is a chi-squared RV with two degrees of
freedom and variance, %2 [10]. That is, the PDF of any

discrete “bin” in the W(k) power spectrum is:

n=

N XN
flx}= = ez, (17)
where x, is the random variable power.
Using (14) and (17), the PDF of |Z (k)|? |W (k)|? at
discrete ensemble frequency k can be deduced:

N —xN

x f—
JZW(x) = F-Zwor Tirore? morer (18)

||Z (1<)|2

From (14), it is apparent that the detection statistic
is obtained by summing N random variables (RVs).
Only half of these random variables are independent,
because the negative frequency half, of the spectrum
contains the same information as the positive
frequency half. Since one side of the spectrum
contains all the information necessary, then the PDF
of the detection statistic is formulated from only one
half of the spectrum. Now, the detection statistic in
(12) is reformulated and redefined as (19):

N

n X2_, PSDyep (K)PSDops(k) +
3 PSDres (0)PSDyp (0). (19)

Because (19) indicates that the threshold is the
sum of N/2 +1 independent random variables, its PDF
can be computed by convolving the PDFs, the N /2 +1
individual random variables. Consequently and the
PDF of the detection statistic for the mode of interest
is given by:

fn(zw) = fzwy, (zwﬂ) * fawn <Zwﬂ_1> *
é fzw, (zw0). (20) ’ ’ ’

Expanding the above gives the PDF of the test
statistic for the mode of interest - Mode 1 as:

1 -2 —xﬂz(o)_za_2
Liz(o)| %3

2 —xNz(1)"252
falow) = | TP @1)

| clz@ire e
L e

Where * denotes convolution. From the PDF in
(21), the threshold for detection of change can be
formulated. To establish the 1% false alarm rate, the
cumulative summation of the PDF area is taken until
the 99% point is determined.

4.5 Method of Implementation

Initial estimates of the quasi-stationary system
parameters are required to assist modal
characterization. That is, a long term estimator (LTE)
is applied to a relatively long record, for instance one
hour of quasi-stationary data. Under normal operating
conditions, while the modal deterioration algorithm is
applied continuously, the estimates are updated once
every half an hour. The long term estimator technique
under review is outlined in [10], and provides
estimates of the measurement site transfer functions
and modal parameters. From this, the individual
modal response estimates at any selected site can be
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extracted. In this application, since the variance of the
noise feed is unknown, the detector PDFs are initially
formulated with the noise variance in (21) set to unity.
To correctly de-normalize the PDF, a rescaling factor
is necessary. The rescaling factor can be obtained by
simply taking K short-term, N length test statistic
measurements over the M length long-term analysis
window and finding the mean value (where K = M/N).
Once re-scaling is performed and the threshold is
established, the detection process begins on all
concurrent short term measurements until another
threshold update corresponding to an update set of
quasi-stationary conditions is instigated at a later time.

x(#2) Meoasured System
Cutput

Fig. 5. Short Term Modal Detection Applied to
Real Data.

Finally, the method analyzed in this section, can
provide short term alarming of individual modal
deterioration in large interconnected power systems.
The alarming can be set to a desired level of
confidence whereby false alarms occur within
expected theoretical rates when the system is under
quasi-stationary conditions. In specific terms, this
technique aimed at alarming large negative changes
in modal damping rather than monitoring small drifts in
damping values. The ability of the optimal detector is
however limited by the relative strength of the modes
but this limitation needs to be put into perspective.
First, the stronger modes are what dominate the
system response, and so the inability of the optimal
detector to work well with very weak modes is not of
paramount concern. To ratify alarms for weaker
modes, longer time windows can be used in parallel
with shorter time windows and a dynamic alarm
response strategy can be designed.

5. RAPIDLY DETECTING MODAL CHANGES
USING KALMAN FILTERING APPROACH

Again, conventional damping factor estimation
techniques are limited by the requirements of long
data records. Even though these estimation
techniques provide accurate and reliable means to
monitor power systems under normal operating
conditions, they do not accommodate the need for
rapidly detecting sudden modal damping changes that

may be harmful to power system reliability and
stability. To address this shortcoming, this section
seeks to present another method which is able to
provide indications of modal parameter change based
on short data records. Consequently, a Kalman filter is
then set up to estimate the output arising from the
disturbances. The innovation is then determined as
the difference between the measured output and the
estimated output. Provided the assumed model
parameters are valid, it is very clear that the
innovation from a Kalman filter is spectrally white [10].
One can then detect if there are changes in these
parameters through continuous monitoring of the
whiteness of the innovation [10].

5.1 Stochastic Power System Model

Using [18] as the initial point of reference for the
power system model, the power system itself is
modelled as an IIR filter so that the power system
response to disturbances can be modelled as the
output of an IIR filter driven by integrated white noise.
The measured power system output such as power
and angle at site i is differentiated to provide the
signal yi(n). As illustrated in Fig. 6, this is the signal
that would have been obtained if the white noise,
w(n), had excited the power system. Therefore, the
power system model deployed in this section is the
single measurement site, single excitation model.

_ Transfer Function .

Hy(z)=Z[h,(n)]

Fig. 6. Equivalent model for the individual
response of a power system to load changes

It is important to consider that the IIR power
system filter is the plant. Based on standard Kalman
estimator, the general Kalman estimator for a plant
driven by a control signal, u(n), perturbed with white
noise, w(n), with multi-dimensional  output
measurements, y(n), corrupted by measurement
noise, v(n), is depicted in Fig.7 [10].

—¥
Kalman Filter ot
— X

»y.(n)
ufn} - ¥in) +

Plant
— +

white noise
w(n) measurement noise, v{n)

Fig. 7. General Kalman filter estimator

From the application, the control signal, u(n), is
zero and the plant is only excited by the white noise,
w(n). Generally, the output of the Kalman filter
provides estimates of the plant output, y(n) and of the
states, x(n). The plant represents a large
interconnected power system and the current
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measured from plant output, y(n), corresponds to a
vector of measurements from multiple recording sites.
In real life scenario, the measurements are voltage
angle measurements rather than power
measurements because the potential for modal
information extraction is greater for voltage signals
than for power signals [18]. The optimal placement of
these measurement sites within a large distributed
power system is discussed in [4]. The vector v(n)
represents noise measurements from each selected
site. In a practical application, the plant output
measurement vector, y(n) can be recorded at a GPS
synchronized wide area monitoring centre [4].

If there is a sudden change in the power system
response, the spectrum of the innovation will highlight
this change with a peak around the modal frequency
in question. Conversely, in a power system operating
under stationary conditions, the innovation will be
white and will have a flat Power Spectral Density
(PSD). Therefore, with a suitable threshold set, large
undesirable damping changes can be readily
detected. A suitable threshold is one which is set to
give a False Alarm Rate (FAR). For instance, if the
FAR is set to 1% then when an alarm occurs, one
knows that it is a genuine alarm with 99% confidence.
The purpose of this method is to detect sudden large
detrimental changes and not to detect small changes
in system parameters [10]. Consequently, while still
providing the required rapid alarming of sudden
system deterioration, thresholds should be set to
minimize false alarm. The innovation is said to detect
a frequency shift instead of a damping change
whenever the innovation’s PSD display a peak around
the new modal frequency and a trough around the
original modal frequency.

5.2 Kalman Application in Power System
Analysis

5.2.1 Kalman formulation in Power System

In the power system model under review, the state
and output equations are as follows:

X(n+1) = Ax(n) + Gw (n) (22)
Y,(n) = Cx(n) +Dw(n) +v(n) (23)

Where, A, G, C and D denote the usual state and
output equation matrices [10]. The noise processes,
w(n) and v(n), are zero mean Gaussian white noise
sequences with co-variances given by the following
equations:

Elwmw(®m)'} = Q (24)
E{v(n)v(n)T} = R (25)
E{w(n)v(n)T} = N (26)

Where E(.) denotes expected value. Two
assumptions are important, first; will be that w(n) and
v(n) are uncorrelated and that the plant is excited by a
common white noise source, w(n). However, the plant
response to such excitation is measured at various
geographic locations. The measurement noise, v(n), is

a vector that is congruent to the wide-area monitoring
of inter-area oscillations. The load variations become
close to Gaussian when there are large number of
independent customer loads [18],[24]. In normal
stationary operation, the optimal Kalman state
estimator is given by the following set of discrete
equations [20]:

X(n+ 1/n) = Ax (n/n) + Gw(n) (27)
X(n/n)=x(n/n—-1) + My(k) (28)

$(n) = Cx(n/n— 1) (29)

Y(n) =y (n) - ¥(n) (30)

Where y(n) is the white zero mean Gaussian
“innovation” sequence with units rad/sec. The gain
matrix, M, is calculated from the following equations:

P (n+1/n) = AP (n/n)A + Q (31)

V=CP (n/n—1)C'+R (32)

M=P (n/n—1)CTV"1(33)
P(n/n)=P(n/n—1)—MCP (n/n—1) (34)

Where P (i/j) is the estimation error co-variance of
the state estimates vector, x(i/j), and v is the co-
variance of the innovation vector, y(n). The gain
matrix, M, is derived by solving the discrete time
Ricatti equation [10],[25],[26].

5.2.2 State space representation of the power
system model

To effectively generate the matrices A, G, C and D
for the power system model in Fig. 6, the transfer
function of h(n) is first identified. This enables proper
formulation of the state space matrices into
controllable canonical form. To illustrate the process,
a power system example comprising a two mode
system with single site measurement and disturbance
is considered. The impulse response at the site is
assumed to be:

h(t) = ha(t) +h2(t) (35)
Where
hi(t) =Aie % sin(w;t) i =1, 2. (36)

o;is the modal damping, , w; is the modal
frequency and A; is the magnitude respectively of the
i™ mode. Taking the Laplace transform of (35) yields
the continuous time power system transfer function.
H(s)= —22 4 2292 __(37)

(s+01)2+ w? (s+02)2+ w3

If the sampling period is T, then the discrete time
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_ b1z Y+byz" 2 +bgz 3
1+a1z 1 +ayz72+azz 7 3+asz™*

(38)

Where the coefficients, {by, b,, b3, a4, a,,as,a,}are
given by:

b, = Ajze %t sin(w,T) + Ayze %ttsin(w,T) (39)

b= —2e~T(@1%92) (4, sin(w,T) cos(w,T) +
A, sin(w,T) cosw,T)) (40)

by  =(A;e T@1%%2) sin(w,T) A,e~T(@1+92) sin(w,T))
(41)

a; = —2(e"?1" Cos(w;T) + e~72" Cos(w,T)) (42)

a, = e 29T 4 4¢-T(01+92) Cos(w,T) Cos(w,T) +
e (43)

a; = -2(e"T01+292) Cos(w, T)e T(?01+292) Cos(w,T))
(44)

a, = e~2T(01%02) (45)

The state space matrices in controllable canonical
form can be determined from the transfer function
[27]:

_al _az _a3 _a4
11 o o o
A= 0 1 0 0 (46)
0 0 1 0
1
_10
G=|,|@n
0
C=[by b, by 0](48)
D = [0] (49)

5.2.3 Kalman Solution

With the discrete state space plant defined in (46)-
(49), the Kalman solution depicted in Fig. 7, can be
realized. Accordingly, the Kalman estimator
equations, (27) - (30) are evaluated and then the
normalized innovation is defined:

Yn(n) = Ky(n), (50)

The gain K which normalizes the innovation to
unity variance is known as normalization again. The
normalization gain can be defined as the square root
of the inverse power of the innovation window. If the
normalized innovation sequence results from a
significantly different system than the one considered,
then the concentration of spectral energy around the
mode of significant change will still demonstrate a
strong threshold crossing. Kalman analysis operates,
if the the power system model and noise data satisfy
the drawbacks outlined in [10],[28],[29]. This means
that the plant and noise data must satisfy conditions
and relationships such as; detection of plant transfer
function state space matrices, (51), measurement
noise variance must be zero (52), left hand side of
(53) must be non-zero and matrix defined by the left

hand side of (54) must have no uncontrollable modes
on the unit circle [10].

(C,A), (51)
R >0,(52)
Q —NR-T—1NT >0, (53)

(A— NR-1C,Q — NR-1INT) (54)
where [21];

GQGT (55)

R=R+ DN+ NTDT + DQD",(56)

N =G(QDT + N) (57)

Q

5.2.4 Detection using the Innovation

Under stationary operating conditions, the
normalized innovation defined in (50) is white and
Gaussian [10], with zero mean and unity variance
thereby causing the power spectral density of the
innovation to be flat. It is important to assume that the
observation window has N samples and that the
sampled PSD is found by taking the squared
magnitude of the Discrete Fourier Transform (DFT) of,

Yo(n), i.e.
A (k) = [¢a{yn(m}? k=0, 1,.N-1, (58)

Where {; {y,(n)} is the Discrete Fourier Transform
(DFT).

The samples of DFT of white noise are chi-squared
with two degrees of freedom. It is equally known as
exponential distribution [30],[31],[32] i.e.

flA(k)} = Ne 10OV, (59)

Where,  f{x} denotes the
function, x [10]

probability  density

At a theoretically determined confidence level
found through the cumulative sum of the area under
the probability density function (PDF) (59), a suitable
threshold can be set within the PSD. A 99%
confidence interval could be found by solving (60):

0.99 = [ F, {A}d/ (60)

For stationary system, the normalized innovation
PSD is expected to remain white. It resides and within
the threshold set at a given level of confidence. As the
system experiences a large detrimental deviation from
the stationary system model as defined in (22)-(23), a
spike may appear above the threshold in the
innovation PSD. In practical application, if the
damping is deteriorating, there would not be an
automatic protection relay to trip a line. The response
would be to ramp back generator settings or to trip an
offending aspect of the plant provided it can be
identified

5.2.5 General Guide in tuning the Kalman Filter

In practical scenario, Kalman filter requires
adequate tuning to achieve the desired optimal
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estimation when dealing with real data applications.
Usually, Q and R, values are known and can be easily
tuned. Such prior knowledge of the error covariance
matrices may not be available in real life scenario.
Knowledge of the measurement transducer
performance or measurement noise however, could
be obtained through testing. Even so, a technique of
tuning is still necessary to allow for changes over
time. In addressing this issue, the selection of the
error co-variance Q is particularly important, such that
Q >> R [10][33][34]. This would ensure the adaptive
capability of the Kalman filter. It is recognized that the
measurement error covariance would be negligible;
hence the determination of appropriate values in this
analysis can be obtained empirically, by first setting Q
to unity, and then adjusting R so that the pseudo-
stationary innovation result was close to white. Further
techniques such as machine learning techniques for
tuning the filter can be derived from [35][36][37].

5.2.6 Conclusion on Kalman Filtering Approach

The Kalman estimator is an optimal linear
estimator which has proven to be effective for rapidly
detecting modal changes in both simulated and real
world power system scenarios. This detection strategy
has demonstrated the capacity to identify the mode
which has changed at a particular time and also
rapidly detect large changes to power system modes.
Multi-site measurements can be used to provide
greater confidence in the detection alarming. This has
significant implications for power utility intervention
strategies. Clearly, this method is effective in terms of
computing power and can effortlessly be implemented
in real-time.

6. SIGNIFICANCE AND LIMITATIONS OF EBD,
OMID AND KID IN LARGE INTERCONNECTED
POWER SYSTEMS

When applied to real systems, the EBD is reliable
and simple and can be easily tuned in the power
system. While it provides a rapid indication of sudden
detrimental change, it cannot tell precisely which
mode the change is associated with. Therefore, it
provides detection, but not identification. Though it is
still attractive to multi-modal systems to provide short-
term monitoring, it is well suited for single mode power
systems. The OIMD strategy which is suitable for use
under certain conditions can equally be exploited for
application in dominant mode, multi-modal systems. It
can provide detection, but may be ambiguous in
identification under undesirable conditions. But for the
difficulty in tuning the Kalman filter adequately, the
KID method has proven to be able to provide both
detection and mode identification. Therefore, in
practical scenario, this may not be an easy task which
makes the more informative detector the most
complicated to implement [10][38].

7. CONCLUSIONS AND FURTHER STUDIES

This work has reviewed extensively, strategies
deployed to assist power utilities to consistently and
quickly monitor and confirm the modal condition within

a large interconnected power system. Three modern
methods of rapidly detecting deteriorating modal
damping have been presented; the energy based
method (EBD), optimal individual mode detector
(OIMD) and Kalman innovation method (KID). EBD is
excellent for monitoring the system output as a whole
and would be particularly suitable for single mode
systems. But OIMD and KID are designed to provide
both alarming of sudden negative damping and the
identification of the offending mode. These strategies
deploy analytical means to characterize the expected
system measurement and determine the desired
threshold. This work provides a comprehensive review
of existing modal estimation methods and proposes a
new framework for rapid detection of deteriorating
modal damping.

Future studies should aim to demonstrate the
adequacy of the methods by way of simulations,
verification and real data analysis from the Nigerian
interconnected power system. Such studies should
also provide close to expected false alarms under
adequately damped quasi-stationary conditions of the
power system. Also, exploring the application of
machine learning techniques for modal estimation or
investigating the impact of renewable energy sources
on power system stability are critical areas for future
research.
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