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Abstract— In this paper comparison of pre-

trained machine learning models for Hot Pepper 
disease detection and classification is presented. 
Specifically, the following four different machine 
learning models are considered: Residual Neural 
Network 50, Inception V3, Residual Neural 
Network 152 V2 and Mobile Net V2. The image 
dataset used in this work were obtained from the 
Hot Pepper disease images documented by the 
Syiah Kuala University, Indonesia. Auto-
orientation of pixel data (with EXIF-orientation 
stripping) was done to ensure the diseased areas 
are effectively captured as accurate as possible; 
each image was cropped to 640 x 640 pixels from 
each original image. In order to train and validate 
the models, dataset splitting was done as follows:  
70% of training dataset, 10% of validation dataset, 
and 20% of testing dataset. The models were 
trained and validated over 20 epochs. The results 
showed that MobileNetV2 has the highest training 
accuracy of 99.74 % but the validation accuracy of 
62 % whereas the InceptionV3 has the training 
accuracy of 94.39 % and validation accuracy of 78 
%. It can be concluded that based on accuracy 
performance, the InceptionV3 model is the best 
model. Again, the InceptionV3 has the highest 
precision value of 80.0% and the highest recall 
value of 79.0%. In addition, the InceptionV3 has 
the highest F1 score value of 78.0%. in all, the 
InceptionV3 model is the best model among the 
four models considered. 

Keywords — Residual Neural Network 50, Pre-
trained Model, Inception V3, Machine Learning 
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1. INTRODUCTION 

In recent years, the growing population and 
worsening global climatic conditions are putting mounting 
pressure on farmers to meet the global food demand [1,2,3]. 
The problem has attracted many researchers and solution 
approaches. Some researchers have advocated for 
genetically modified food while some have opted for 
precision farming and smart agricultural techniques [4,5,6].  

Again, one of the perennial challenges face by 
farmers is disease; plant diseases can greatly affect the plant 
yield, cause great losses and spread to other farms which 
extends the damages due to the plant disease [7,8,9]. Early 
detection of the plant disease can greatly avert these losses 
[10,11]. As such, farmers are employing technologies to 
ensure early detection and classification of plant diseases to 
minimize the damages that can be caused by plant diseases. 
In this study, machine learning models are used to carryout 
Hot pepper disease detection and classification. The 
performance of the selected machine learning models are 
then compared [12,13,14].  The essence of the study is to 
identify the most suitable machine learning model for the 
Hot pepper disease detection and classification.  
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2. METHODOLOGY  
This study is focused on comparing the effectiveness of 
four different pre-trained machine learning models in 
detecting and predicting hot pepper diseases. Specifically, 
the following four different machine learning models are 
considered: Residual Neural Network 50, Inception V3, 
Residual Neural Network 152 V2 and Mobile Net V2.The 

flow diagram for the hot pepper leave diseases detection 
and classification machine learning models training and 
evaluation is shown in Figure 1. The diagram in Figure 1 
shows the key steps that were followed while carrying out 
the study; it highlighted the different stages or phases in the 
model training and evaluation. 

 

 
Figure 1 The flow diagram for the machine learning models training and evaluation 

2.2  Data collection and preprocessing  
      The image dataset used in this work were obtained from 
the Hot Pepper disease images documented by the Syiah 
Kuala University, Indonesia. The enhanced bar chart in 
Figure 2 shows the number of image samples in the dataset 
which has four different diseases and a healthy pepper 

dataset. Some image samples of the diseased peeper leaves 
are displayed in Figure 3. 
The cropping of images carried out in this work was 
manually done, auto-orientation of pixel data (with EXIF-
orientation stripping) was done to ensure the diseased areas 
are effectively captured  as accurate as possible; each image 
was cropped to 640 x 640 pixels from each original image. 

To prepare images for training and ensures the models can 
generalize well to new and unseen data 

Choose pre-trained models on a large datasets relevant to 
our task 

A comprehensive datasets of images relevant to the task is 
collected  

This helps understand the dataset characteristics and inform 
preprocessing steps 

Splitting allows effective training, tuning and model 
evaluation 

This is done to prevent layer weight modification during 
training 

Parameters like optimizer, los function and metrics are 
defined.  

Performance indicators are used to assess the models 

Data well augmented 
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Exploratory Data Analysis 
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