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Abstract— In this study, determination of the 
effects of abrasive wear mechanisms on 
aluminium alloy (AA 6061) under operating 
conditions like; sliding distance, load and sliding 
speed is presented. The aluminium alloy AA 6061 
sample was prepared adapting the research 
process that included sectioning, abrasive wear 
test, wear measurement and chemical 
microanalysis using Scanning Electron 
Microscopy (SEM)/ Energy Dispersive X-Ray 
Spectroscopy  (EDS or EDX).The insights were 
deduced from the results of the analysis are, one, 
the abrasive wear behaviour is dependent on the 
applied load, sliding distance and sliding speed 
mainly. Two, the wear is seen to increase at higher 
sliding speed and at higher applied load. It was 
seen at velocity of 10 m/s and 50 N load; the wear 
rate was higher in AA 6061and Abrasives Al2O3 
and SiC. Three, the scanning electron microscope 
images of worn surfaces revealed cavities, pits, 
and cracks due to the plastic deformation and the 
delamination mechanism at higher loads ( 50 N). 
Finally, the abrasives; Al2O3 and SiC had lower 
wear rate and coefficient of friction when 
compared to the base alloy AA 6061. The 
knowledge acquired through this study is 
essential for the design and development of more 
durable and efficient automotive components.. 

Keywords — Abrasive Wear, Aluminium Alloy (AA 
6061), Sliding Distance, Scanning Electron 
Microscopy (SEM)/ Energy Dispersive X-Ray 
Spectroscopy  (EDS or EDX), Sliding Speed 

1. Introduction 
A lot of mechanical components and equipment 

are subjected to sliding contact in real time applications 
[1,2]. Such mechanical components that are frequently 
subjected to sliding wear include belt drives, valves, 
machinery guide ways, pumps as well as bearings and 
piston- cylinder arrangements [3,4]. Moreover, studies have 
shown that many failures in mechanical equipment 
occurred as a result of problems associated wear [5,6]. The 
widespread use of AA 6061 aluminium alloy in automotive 
components such as engine blocks, cylinder heads and gear 
boxes, has raised serious concerns about its tribological 
behaviour under operating conditions such as load, speed 
and temperature [7,8]. 

Abrasive wear, in particular, is significant 
mechanism that can lead to premature failure of these 
components, resulting in high cost of maintenance of 
automobile parts, reduced fuel efficiency and compromised 
safety [9]. High temperature affects the wear rate and 
mechanism of ceramic coatings in aerospace, equally, 
cycling loading affect wear rate and mechanisms of gears in 
turbines [10]. Therefore, understanding the effects of 
abrasive wear mechanism in mechanical components such 
as; pistons, engine blocks and gear boxes in automobiles 
under different operating conditions like; load, speed and 
temperature are important nucleus of this research.  
 Hence, this study is undertaken in order to fathom 
the effects of abrasive wear mechanism on aluminium alloy 
(AA 6061) of mechanical components under different 
operating conditions such as; (temperature, load and speed) 
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Cares were taken after each test to avoid interaction of wear 
debris in the specimen.  
Wear rate which relates to the mass loss (Δm) and sliding 
distance (L) was calculated using the expression, 

W = Δm/L   (2) 
For each pass in the wear test the friction force was 

measured and eventually the friction force was averaged 
from the value measured in all the passes. The average 

value of co-efficient of friction, µ of composite was 
calculated from the expression, 

µ = Ff / Fn  (3) 
where Ff is the friction force and Fn is the total number of 
passes 

2.4 Scanning Electron Microscopy (SEM)/ Energy 
Dispersive X-Ray Spectroscopy  

(EDS or EDX)  
 
This equipment was used to perform chemical 

microanalysis in conjunction with scanning electron 
microscopy (SEM). This technique detected x-rays emitted 
by the specimen when bombardment by an electron beam. 
The primary purpose was characterizing the elemental 
composition of the analyzed volume. Scanning Electron 
Microscopy (SEM) was used to identify imperfections, 
cracks, or some foreign material inclusions on a surface. It 

was also used to study the microstructure along with 
finding the shape and sizes of smaller particles. 
The microstructure examination process of the base AA 
6061 alloy specimens was carried out via making the 
surface by grinding, polishing, etching, and then seen 
beneath an Optical microscope. The etching procedure was 
conducted on the polished surfaces via utilizing etchant 
reagent for the alloys of Al. Keller's reagent consists of 95 
ml H2O, 2.5 mL HNO3, 1.5 ml HCl, and 1.0 ml HF. After 
that, the specimens were cleaned with water and alcohol 
and dried in the oven.  

Scanning Electron Microscope (SEM) equipment 
provided with Energy Dispersive Spectroscopy (EDS) has 
studied the microstructure of SiC and Al2O3. Additionally, 
the alloy microstructures were performed to study the 
topography of the wear surfaces after the wear test 

3. Results and discussion 
3.1 Chemical Composition of the Aluminium Alloy 
AA 6061 
  The metal matrix selected for the study was based 
on Al-Si-Mg alloy system, designated by the American 
Aluminium Association as Al 6061. It offers a range of 
good mechanical properties and good corrosion resistance. 
The microstructure analysis of AA 6061 was conducted and 
the result is depicted in Figure 2. The chemical composition 
of Al 6061 alloy is shown in Figure 2.  
 

 
Figure 2 . The Chemical Composition of AA 6061 

 

3.2 Scanning Electron Microscopy (SEM) Analysis 
of AA  6061 Aluminium Alloy 
  The microstructure of the AA 6061 when observed 
under scanning electron microscope (SEM) is presented in 
Figures 3. The microstructures of the aluminium composite 
sample showing reinforcement particles of SiC and Al2O3 
which gave the fine and highly consistent grain structure is 

presented in Figure 4. The SEM micrographs in Figures 5 a 
and b view the microstructure of the base alloy and 
composite sample respectively, reinforced with hybrid 
addition (SiC+Al2O3) distribution of particles is 
homogenized totally. That is because the rotating tool gives 
adequate heat and circumferential force for dispersing the 
particles of (SiC) or (Al2O3) to become full in the broader 
region. The EDS analysis is presented in Figure 5 c for a 
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Table 4: Coefficient of friction for aluminium alloy AA 
6061, Al2O3 and SiC 

 
 
Load (N) 

Coefficient of friction 
1(AA6061) 2 (Al2O3) 3(SiC) 

    
10 0.172 0.195 0.135 
20 0.268 0.200 0.181 
30 0.342 0.226 0.215 
40 0.395 0.316 0.293 
50 0.415 0.323 0.298 
    

 
3.4    Effect of Applied Load, Sliding Distances and 

Sliding Velocities on Wear Rate.  
The wear rates for the AA 6061 as function of 

load, sliding distance and sliding velocities were shown in 
Figure 8, Figure 9 and Figure 10.  From  Figure 8, the wear 
rate increased linearly with increasing sliding distance 
under applied load because of abrasion wear exhibited for 
low sliding velocity 2 m/s. The presence of abrasive wear in 
low velocity has been reported by previous studies also 
(Shanthi et al., 2010). Also, from Figure 8, the rate of 
increase of wear rate from 20 to 100 m sliding distance was 
high at high load (50 N) compared to low loads (5 N and 10 
N). At high sliding velocity (10.0 m/s), the rate of increase 
of wear rate from 20 to 100 m sliding distance was 
comparatively low (Figure 13) for all normal applied loads 
for both Al2O3 and SiC because of severe oxidation. From 
Figure 12, Figure 13 and Figure 14, it is evident from the 
results that the higher wear rate was observed at the higher 
normal load (50 N) and at high sliding velocity (10.0 m/s). 

Main effect plots for abrasive wear volume loss of 
Al 6061 alloy matrix, Al2O3 and SiC reinforced Al alloy 
composites are represented in the Figure 12, Figure 13 and 
Figure 14. It is clear from Figure 12, Figure 13 and Figure 
14 that sliding distance has the greatest effect under the 
optimal testing conditions followed by the applied load. As 
the sliding distance increases wear rate also increases. This 
is because as the sliding distance increases a greater number 
of abrasives comes into contact. It is further inferred from 

the Figures that the influence of applied load on wear 
behaviour is also significant. This can be attributed to an 
increase in penetration ability of the fractured particles with 
increase in load. The influence of sliding speed shows a 
slight effect and it contributes to a lesser extent compared to 
the sliding distance and applied load. As the sliding speed 
increases the wear rate decreases. It is clear from Tables 5, 
Tables 6 and Tables 7 as well as from  Figure 12, Figure 13 
and Figure 14 that sliding distance has more contribution on 
abrasive wear followed by applied load as reported in past 
studies (Sahin, 2005). This is because the abrasive particles 
were rigidly fixed on emery paper and they did not move 
freely or change their position against the specimen during 
sliding.  

So, the load was effectively transferred from the 
abrasive to the specimen surface. Penetration ability of 
SiCp abrasive particles in emery paper into the specimen 
tested increased due to lower hardness of Al alloy. As the 
sliding distance increased, a higher number of cycles was 
required to complete the test and more asperities came in 
contact with specimen surface. Under the influence of 
applied load, the projected sharp SiC abrasive particles 
were effectively transferred to the specimen surface and 
they were either plastically deformed or remained in elastic 
contact. This resulted in increasing cutting efficiency of the 
abrasive particles. So that the material removal rate 
increased for specimen tested. Under this condition the 
deformation of few SiCp and composite were adhered to 
specimen. As the sliding speed increased, the material 
removed less, because increase of speed decreased the 
removal rate. 

As shown in Tables 5, Tables 6 and Tables 7, it 
was noticed that the rates of wear of the friction stir 
processing composite specimens strengthened by SiC and 
Al2O3 particles are lesser than the processing base material, 
and that is as a result of the strengthening (SiC) and (Al2O3) 
particles which work as the particle of reinforcement of the 
Al alloy (AA6061) that distributed into the matrix of Al. 
The addition of strengthening particles reduces the rate of 
wear since the hard particles being dragged out from the 
composite specimen by the pin through the procedure of 
wear developed on the steel disc and worked as an obstacle.  
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Figure 8: Variation in wear rate as a function of loading for all sliding velocities 

 
Figure 9: Sliding distance on wear rate of AA 6061 

 
 

 
Figure 10: Sliding velocity on wear rate of AA 6061 
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Table 5: Sliding distance values of aluminium alloy AA 6061, Al2O3 and SiC 
Sliding distance 

(m) 
Wear rates (m3/m) 

 
AA 6061                           Al2O3                             SiC 

20.0 0.00030 0.00021 0.00013  
40.0 0.00038 0.00028 0.00019  
60.0 0.00050 0.00040 0.00025  
80.0 0.00075 0.00065 0.00045  

100.0 0.00150 0.00128 0.00112  

 
Table 6: Sliding velocity values of aluminium alloy AA 6061, Al2O3 and SiC 

Sliding velocity 
(m/s) 

Wear rates (m3/m) 
 

AA 6061                           Al2O3                             SiC 

2.0 0.000013 0.000010 0.000008  
4.0 0.000045 0.000035 0.000025  
6.0 0.000090 0.000080 0.000070  
8.0 0.000110 0.000107 0.000102  

10.0 0.000275 0.000255 0.000225  

 
 
 
 
 

Table 7: Applied load values of aluminium alloy AA 6061, Al2O3 and SiC 
Load (N) Wear rates (m3/m) 

 
AA 6061                           Al2O3                             SiC 

10.0 0.0014 0.0010 0.0008  
20.0 0.0025 0.0015 0.0011  
30.0 0.0029 0.0019 0.0014  
40.0 0.0035 0.0025 0.0017  
50.0 0.0054 0.0036 0.0024  
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Figure 11: Coefficient of friction values with different composites at all applying 

load condition 

 
Figure 12:  Wear rate of different composites at all applying load condition 
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Figure 13: Wear rate of different composites at all sliding distance 

 

 
Figure 14: Wear rate of different composites at all sliding velocity 

3.5 Characterization of Worn Surfaces  

  It is noticed from SEM images that the tracks or 
wear paths and grooves of wear rise in the friction stir 
processed specimen, and the cracks alongside the track 
raise the worn-out surface (Abbass and Sharhan, 2023). 
Fundamentally comprising incompletely uneven pits as 
well as longitudinal grooves. One can conclude from the 
study of microstructure that abrasive wear mainly occurs 
with certain adhesive wear traces. With the loads 
increasing, the wear lines width is augmented and causes 
grooves with the remark of big and small cracks propagated 

upon the specimen's surface, where such cracks 
convergence being developed with reinforcement particles 
SiC and/or Al2O3 is better in the resistance to wear than the 
specimens at the whole exerted loads. That's owing to the 
particles' role of (SiC+Al+ Al2O3) in refining the grains of 
the matrix of Al alloy as well as the hardness of the high 
particles of (SiC+ Al2O3). Figure 6  presents the scanning 
electron microscope (SEM) images of the worn surface. 
The deep and broad grooves and tracks take place in the 
friction processed specimen. That's owing to the intensive 
removal of material and the plastic deformation, which 
resulted in work hardening of the metal surface and 
formation of cracks that raise the debris of wear upon the 
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worn surfaces. Sareh et al. (2016) showed that the wear 
debris could act as abrasive particles between two surfaces 
of specimen and rotating disk. Also, they were concluded 
from SEM micrographs of the worn surface of unreinforced 
alloy, the predominate wear mechanism was adhesive wear. 
While in the Aluminum-SiCp, the wear mechanism 
changed from adhesive to abrasive. This was due to the 
existence of ceramic particles that spread uniformly upon 
the worn surface, which does not permit the wear and 
severe material removal. It means that reducing the wear 
debris formation on the surface can improve the wear 
resistance of the composite. Such outcomes are similar to 
the Mohamed and Muna (2014) investigated the conduct of 
the wear of aluminium alloy fabricated by powder 
metallurgy.  

4. Conclusion 
The objective of this study was to determine the 

effects of abrasive wear mechanisms on aluminium alloy 
(AA 6061) under operating conditions like; sliding 
distance, load and sliding speed. Investigating and 
evaluating the effects of load, sliding distance and velocity 
on AA 6061 alloy due to abrasive wear mechanism. The 
relationship between abrasive wear rate, applied load, 
sliding distance and sliding speed in automotive 
components such as; piston, engine blocks and gear boxes 
was analyzed. Wear tests and Scanning Electron 
Microscope (SEM) were conducted to ascertain the effects 
of abrasive wear mechanism on mechanical components 
under different operating conditions. 
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