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Abstract This work presented optimal 
configuration of LorRa transceiver-based IoT 
network using Support Vector Machine (SVM) 
learning model. Specifically, the SVM algorithm is 
used to model the relationship between 
transmission parameters and energy efficiency by 
learning optimal decision boundaries in non-linear 
feature space. The dataset used in this work was 
generated by simulating the LoRa-based IoT 
network where some of the parameters values 
were specified as input while the other set of 
parameters were computed by the simulation 
program. The dataset had 10 features and 3000 
records. The SVM model results showed energy 
prediction of 0.1003mJ at transmission distance 
(TD) of 105.82 m which increased significantly to 
predicted energy of 3.4023 mJ at TD of 886.98 m. 
The model maintains high PDR at short ranges; 
for example, 98% at 10.85 m, but suffers a steady 
decline as transmission distance increases. Most 
entries are favorable, with efficiency scores above 
95% at mid-ranges, such as 317.19 m (95.00%) and 
416.39 m (96.20%). However, at 792.6 m, the 
efficiency drops drastically to 17.37%, which is 
driven by high energy consumption and very low 
packet delivery ration (PDR). 
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1. Introduction 

As the years go by, advancements in wireless 
communications, electronics and technologies 
associated with programmability of devices and 
system give rise to smart systems which are 
changing the way we live and interact with one 
another [1,2,3]. More so, the technologies have 
given rise to interconnection of everything; 
human, machine and virtually anything that can 
connect and interact via sensors [4,5].  

As the IoT driven smart systems era advance, 
researchers are perpetually seeking for ways to 
enhance the performance of the devices and 
system associated with the IoT network [6,7]. 
One area that has attracted great research is the 
energy management in the highly resource 
constrained sensor nodes [8,9,10]. Such nodes are 
mostly battery powered and installed in remote 
areas. As such, it requires ways of enhancing the 
energy utilization of such sensor so as to increase 
on the nodes lifespan. In the case of LoRa 
enabled IoT sensor nodes, there are several 
options that can determine the energy utilization 
of the sensor node [11,12]. In that case, achieving 
optimal energy utilization requires careful 
selection of the sensor node parameters. 
Accordingly, this work employs Support Vector 
Machine (SVM) learning model to predict the 
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values of each of the different parameters of the 
IoT sensor network such that the effective energy 
consumption is minimal with the maximum 
packet delivery performance [13,14]. Such high 
performance IoT network is realized when the 
SVM model is properly trained and validated 
using the dataset extracted from the case study 
IoT network. The details of how such study is 
conducted on the case study IoT network are 
presented in the remaining sections of this study. 

2. Methodology: The Support Vector Machine 
(SVM) Model for LoRa Optimal 
Parameter Configuration 

Support Vector Machine (SVM) is generally a 
supervised learning approach; it works by 
creating optimal hyperplanes which it employs to 
carry out classification or regression task [15,16]. 
For this study, SVM for regression (SVR) is used 
to predict energy efficiency. SVM is particularly 
well-suited to this domain due to its robustness in 
high-dimensional, non-linear, and sparse data 
environments, such as those found in LoRa 
networks with heterogeneous configurations (e.g., 
SF, BW, CR, ToA, DC, TD). Specifically, the 
SVM is used here to model the relationship 
between transmission parameters and energy 
efficiency by learning optimal decision 
boundaries in non-linear feature space.  

Now, let 𝐷 ൌ ሼሺ𝑥௜, 𝑦௜ሻሽ௜ୀଵ
௡  be the dataset 

where, 𝑥௜ ∈ 𝑅ௗ  is the feature vector for LoRa 
configuration, 𝑦௜ ∈ 𝑅 is the target variable; SVM 
function approximates: 

𝑓ሺ𝑥ሻ ൌ 〈𝑤, 𝜙ሺ𝑥ሻ〉 ൅ 𝑏  (1) 

Where, 𝜙: 𝑅ௗ → 𝐻 is a feature mapping into high 
dimensional space, 𝑤 is the weight vector, and 𝑏 
is the bias term. The SVR introduces an 𝜀 -
insensitive loss function 

𝐿ఌሺ𝑦, 𝑓ሺ𝑥ሻሻ ൌ max ሺ0, |𝑦 െ 𝑓ሺ𝑥ሻ| െ 𝜀 (2) 

This means that small errors within േ𝜀  are 
ignored, encouraging a flat function that 
generalizes well as a key property for modeling 
energy systems with minor fluctuations. The 
SVM taining problem becomes: 

min௪,௕,క೔,క೔
∗

ଵ

ଶ
‖𝑤‖ଶ ൅ 𝐶 ∑ ሺ𝜉௜ ൅ 𝜉௜

∗ሻ௡
௜ୀଵ  

 (3) 

Subject to the following three conditions: 

𝑦௜ െ 〈𝑤, 𝜙ሺ𝑥ሻ〉 െ 𝑏 ൑ 𝜀 ൅ 𝜉௜    (4) 

〈𝑤, 𝜙ሺ𝑥ሻ〉 ൅ 𝑏 െ 𝑦௜ ൑ 𝜀 ൅ 𝜉௜
∗           (5) 

𝜉௜, 𝜉௜
∗ ൒ 0    (6) 

Where 𝐶  is the penalty term, 𝜉௜, 𝜉௜
∗  are slack 

variables allowing violation of margins. In order 
to avoid computing 𝜙ሺ𝑥ሻ  explicitly, the dual 
problem is solved using kernels: 

𝐾൫𝑥௜, 𝑥௝൯ ൌ 〈𝜙ሺ𝑥௜ሻ, 𝜙൫𝑥௝൯〉  (7) 

Linear kernel is selected and it is given as: 

𝐾ሺ𝑥, 𝑧ሻ ൌ 𝑥்𝑧   (8) 

The solution becomes: 

𝑓ሺ𝑥ሻ ൌ ∑ ሺ𝛼௜ െ 𝛼௜
∗ሻ𝐾ሺ𝑥௜, 𝑥ሻ ൅ 𝑏௡

௜ୀଵ   (9) 

Where the non-zero 𝛼௜ vectors only actually 
contribute significantly in the prediction. Once 
trained, SVR 
predicts 𝑓መௌ௏ோ: ሺ𝑆𝐹, 𝐵𝑊, 𝐶𝑅, 𝑇𝐷, 𝐷𝐶, 𝑃𝑎𝑦𝑙𝑜𝑎𝑑ሻ →
𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦. This surrogate model can be used in 
optimization frameworks to improve efficiency 
while optimizing energy consumption. 

The dataset used in this work was generated by 
simulating the LoRa-based IoT network where 
some of the parameters values were specified as 
input while the other set of parameters were 
computed by the simulation program. The dataset 
had 10 features and 3000 records. The statistical 
summary of the dataset is presented in Table 1. 
The correlation matrix for the 10 features is 
captured in Figure 1. The SVM model after being 
trained using about 75% of the entire dataset was 
then used to predict the configurations of the 
LoRa IoT network parameters for optimal energy 
efficiency. Notably, the parameter set is predicted 
for any given transmission distance (TD). 
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prediction compromise node lifetime estimation 
and affect PDR indirectly. Thus, SVR is better 
suited as a feature-support model, and must be 
augmented with optimization strategies. 

4. Conclusion 

The IoT network based on LoRa 
transceiver is studied. The Support Vector 
Machine (SVM) model is used to determine the 
parameter values combination for each 
transmission distance such that energy efficiency 
if the highest. In this case the energy efficiency is 
measured as the consumed energy per 
successfully transmitted packet. The dataset for 
the study was generated by simulation and the 
results showed that though the SVM model 
showed promising capability in the selection of 
the network configurations for optimal energy 
efficiency, however, it failed in some cases to 
make the correct selection. Thus, the SVR is 
better suited as a feature-support model, and must 
be further augmented with optimization 
strategies. 
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