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Modern water closets come in various designs and styles, 
ranging from wall-mounted to floor-standing models. They 
can be found in both residential and commercial settings, 
catering to the needs of individuals and the public. Proper 
sanitation practices in water closets play a crucial role in 
maintaining public health, (Serrato, 2018). Furthermore, 
modern advances in water closet design have introduced 
features like bidets and self-cleaning mechanisms. These 
additions enhance personal hygiene and further reduce the 
potential for the spread of diseases. Bidets, for example, 
provide a gentle and thorough cleansing experience, 
eliminating the need for excessive toilet paper usage. Self-
cleaning mechanisms, on the other hand, ensure that the 
water closet is sanitized after each use.  The evolution of 
the water closet has experienced notable advances in 
recent times thanks to the integration of smart technology. 
What was once a conventional toilet was transformed into 
a sophisticated and efficient system, incorporating 
intelligent features for enhanced user experience. Smart 
water closet systems typically boast a range of state-of-the-
art components that underpin their intelligent functionality. 
These components commonly include sensors, actuators, 
connectivity modules, and user interfaces. Sensors play a 
crucial role in detecting user presence, monitoring water 
usage, and assessing system cleanliness. Actuators enable 
automated functions such as flushing, lid operation, and 
other mechanical tasks. 

Traditional WC models use more than 12 liters of water 
per flush (Koeller & Gauley, 2003).  With increasing 
awareness of water scarcity, there is a compelling need to 
reduce water consumption in toilets. Innovations such as 
dual-flush mechanisms, and pressure-assisted flushing 
demonstrate significant advancements in reducing water 
usage. Dual-flush toilets offer two flushing options: a low-
volume flush for liquid waste and a higher-volume flush 
for solid waste. This innovation significantly reduces 
water usage to about 6 liters of water per flush (Gauley & 
Koeller, 2005). Low-flow toilets are designed to use less 
water per flush without compromising performance.  
Pressure-assisted toilets use compressed air to enhance 
flushing power, allowing them to use less water while 
maintaining effective waste removal. This technology is 
particularly effective in commercial settings where high 
performance is required (U.S. Environmental Protection 
Agency, 2013).  

Moreover, concerns regarding hygiene persist due to 
manual operation, which increases the risk of germ 
transmission and cross-contamination, particularly for 
individuals with mobility impairments, who physically 
interact with potentially contaminated surfaces.  Also, 
modern toilets are designed with ergonomics in mind, 
offering features such as comfortable seat heights, 
elongated bowls, and easy-to-use flush mechanisms to 

enhance user comfort (Pogue, 2018; Chui & Thompson, 
2017).  

However, these innovations are only popular in developed 
nations of the world and are only exported to the 
developing ones. Consequently, the trade deficits of such 
countries are further raised, resulting in inflation with its 
catastrophic economic consequences. Thus, there is a 
compelling need for local designs and production of such 
systems, with locally sourced materials. Therefore, this 
work designs and produces a pedal pressure-booster water 
closet system to reduce water consumption. The design 
also minimizes contact with germs and bacteria with hand-
free operation of the system. 

2.0 Materials and method 

The water is pressurized so that the resulting momentum 
flushes the system with minimal mass flow of water. The 
mechanical pressure booster device was designed, and the 
various components of the system were sourced locally 
and assembled. Same was also the mechanical lever and 
cable system which opens and closes the toilet lid. The 
pressure booster follows the fundamental thermo-fluids 
equations. With the right design dimensions, the toilet seat 
was molded using locally sourced fiber materials. The seat 
was attached to a wooden wall where many other features 
for effective and optimal performance of the system were 
attached. 

2.1 Pressure Booster Device  

The pressure booster (figures 2 and 3) was designed to 
enhance the inherent hydrostatic pressure of water 
supplied from the overhead tank. Water enters the pressure 
booster from the overhead tank, and remains stored until 
the flushing mechanism is activated. When the flush 
button (or lever handle) is engaged, the device activates 
the integrated mechanisms that amplify the pressure of the 
stored water. Thus, the gravitational pressure of the 
elevated water is enhanced. 

2.2 Mathematical Approach  

The design of the pressure boosting device and the general 
flow dynamics of the system follow these equations: 

(i) Bernoulli’s Equation: The total mechanical energy of 
the fluid remains constant along a streamline, provided the 
flow is incompressible and there are no friction losses, 
mathematically expressed as:   

௉

ℓ௚
 +

௨²

ଶ௚
 +z =constant  -        Eqn. i 

This principle balances the pressure and velocity of the 
system to ensure effective flushing (White, 2016). 
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Table 2: Momentum assessment per experimental runs in 
reference to the theorical value. 

Exp. 
Runs 

Velocity 
(m/s) 

Momentum 
(kgm/s) [Exp.] 

Momentum 
(kgm/s) 
[Theo.] 

1 1.5 4.5 4.5 
2 1.47 4.3218 4.5 
3 1.51 4.5602 4.5 
4 1.48 4.3808 4.5 
5 1.49 4.4402 4.5 
6 1.52 4.6208 4.5 
7 1.51 4.5602 4.5 
 

The momentum analysis indicates that while the 

theoreƟcal momentum remains constant at 4.5 kgm/s, the 

experimental values showed minor variaƟons between 

4.3218 kgm/s and 4.6208 kgm/s. Although these 

differences exist, they are within a reasonable range, thus 

showing the system consistent performance in each 

experimental run. 

The minor differences observed between the theoreƟcal 

and experimental results could be aƩributed to factors 

like changes in water pressure, actuaƟon, mechanism 

response, resistance encountered in the piping system, 

etc. Despite the deviaƟons, the experimental values 

closely align with theoreƟcal predicƟons, thus 

underscoring the robustness of the design.  Also, some 

experimental momentum values were slightly lower than 

theoreƟcal values, aƩributed to energy losses due to 

fricƟon in the system, inefficiencies in the flush 

mechanism, or air resistance. However, the differences are 

minimal, showing the opƟmal efficiency of the system. 

Generally, the experimental results showed that the WC 

system operates efficiently, exhibiƟng minimal deviaƟons 

from theoreƟcal expectaƟons. The small fluctuaƟons in 

volume per flush, flow velocity, and momentum are 

consistent with the variaƟons expected in pracƟcal 

systems.  

3.2 System Performance 

Pressure measurements were a critical part of our 
evaluation. The initial pressure from the overhead tank 
(P1) was 196.2 kPa, the pressure within the pressure 
casing (P2) was 562.288 kPa, and the final pressure 
entering the water closet (P3) was 562.01 kPa after losses 
due to friction and valve fittings and valves. These values 
were verified using strategically placed pressure gauges, 
which showed that the pressures matched the calculated 
values, demonstrating the effectiveness of the pressure 

casing and the mechanical pressure system in amplifying 
the pressure as designed. Pressure ensures that water is 
forced through the water inlet system with adequate force 
in order to maintain a steady and consistent flow, while 
momentum ensures that this force translates into effective 
cleaning action at the bowl of the water closet system. 

Momentum is given as:     
M = ṁ. u  

where:     
ṁ = mass flow rate  
 ṁ = density x volume of water per flush  
 
ṁ = ℓ x V      
Recall that V = A.u 
ṁ = ℓ.A.u 
So that momentum,  
M = ℓ.A.u.u = ℓ.A.u²    = 4.5 kgm/s 

According to Rose C. Parker (Rose et al., 2015), the 
average daily mass of human feces ranges from 0.1 to 
0.2kg per day. Multiplying 0.2kg by a factor of safety of 5, 
the maximum human feces by day becomes 1kg. This 
means that the impact of the incoming stream of water will 
have enough force to move the waste quickly and 
effectively out of the bowl.   

3.3 System Economic Assessment 

The economic evaluation of both the novel and traditional 
WCs was carried out. The assessment compares the 
economic gains of the smart water closet (WC) with the 
traditional WC for a 1,000-liter overhead storage tank. 

Smart Water Closet: 

Volume per flush:   3 liters 
Number of flushes per day:  5 
Daily water usage:     3 L×5=15 L 
Days until next refill:  

ଵ଴଴଴௅

ଵହ௅
 ≈ 66  

 
Traditional Water Closet: 
Volume per flush:    6 liters 
Number of flushes per day:   5 
Daily water usage:    6 L×5=30 L 
 
Days until next refill:  

ଵ଴଴଴௅

ଷ଴௅
 ≈ 33 

 

Cost Analysis 

Assuming a refill cost of ₦2,000 per tank: 

Smart Water Closet: 
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With a refill every 66 days, the total cost for refills within 
this period is: 

Cost =  ₦2,000 

Traditional Water Closet: 

With a refill every 33 days, the total cost for refills within 
66 days is:  

Cost =       
଺଺ ௗ௔௬௦

ଷଷ ௗ௔௬௦
 x ₦2,000 

=       ₦4,000 

From the forgoing, it is clear that the smart water closet 
design demonstrates a clear economic advantage over 
traditional water closets. The cost of refilling the overhead 
tank for the smart WC is ₦2,000 over 66 days, while the 
traditional WC incurs a cost of ₦4,000 within the same 
timeframe. This represents a 50% cost savings, 
highlighting the economic benefits of adopting the smart 
and sustainable WC design. 

4. 0 Conclusion 

The design and production of a sustainable water closet 
system aimed at developing a water closet that optimizes 
water usage through high-pressure application. The design 
features a hand-free mechanism where flushing and seat 
operations are controlled via foot pedals, leveraging the 
principles of lever mechanics and tension strings. The 
AutoCAD model presented a sleek and smooth design, 
which was integral to the project's conceptualization. The 
project on the design and fabrication of a sustainable water 
closet system has shown promising results. By the use of 
pedal-operated mechanism and minimal water, a system 
that is accessible, efficient, and environmentally friendly 
was created. While, this project has successfully 
demonstrated the core principles and functionality of the 
system, challenges remain in achieving the design's full 
potential. Addressing these challenges through design 
refinement, alternative pressure enhancement methods, 
and rigorous testing will be crucial for the successful 
realization and implementation of the water closet system. 
Future work will build upon these findings to enhance the 
design's effectiveness and practicality, paving the way for 
innovative solutions in water-efficient sanitation 
technology. 

 

REFERENCES 

Chui, M., & Thompson, M. (2017). Smart home, 
seamless life: Unlocking a culture of 
convenience. McKinsey & Company. Retrieved 
on August 22, 2022, from 

https://www.mckinsey.com/industries/high-
tech/our-insights/smart-home-seamless-life 

Halliday, S. (2001). The Great Stink of London: Sir 
Joseph Bazalgette and the Cleansing of the 
Victorian Metropolis. The History Press, United 
Kingdom. 

Hanson, B. (2007). The Armitage Shanks Pocket Guide to 
Bathroom Etiquette. Profile Books,  London, 
United Kingdom. 

Jansen, G. (2000). Roman toilets: Their archaeology and 
architectural development. Babesch: Bulletin 
Antieke Beschaving, 75, 75-101 

Kenoyer, J. M. (1998). Ancient Cities of the Indus Valley 
Civilization. Oxford University Press, Oxford, 
United Kingdom. 

Koeller, J., & Gauley, B. (2003). High-Efficiency Toilet 
(HET) Performance Testing. Veritec Consulting 
Inc., Mississauga, Ontario. 

Metcalf, T. G., Stiles, W. C., & Melnick, J. L. (1995). 
Human viruses in sediments, sludges, and soils. 
World Health Organization: Environmental 
Health Criteria, Geneva, Switzerland. 

Rose, C., Parker, A., Jefferson, B., & Cartmell, E. 
(2015). The characterization of feces and urine: A 
review of the literature to inform advanced 
treatment technology. Critical Reviews in 
Environmental Science and Technology, 45(17), 
1827-1879. 

Scobie, A. (1986). Slums, sanitation, and mortality in the 
Roman world. Klio, 68(2), 399-433. 

U.S. Environmental Protection Agency. (2013). 
WaterSense® specification for tank-type toilets. 
Retrieved on August 22, 2022, from 
https://www.epa.gov/sites/default/files/2017-
01/documents/ws-products-spec-tank-type-
toilets.pdf 

Ward, B. (2000). A Brief History of Thomas Crapper. 
Polperro Heritage Press, Looe, United Kingdom. 

Wright, L. (1960). Clean and Decent: The Fascinating 
History of the Bathroom & the Water Closet. 
Routledge & Kegan Paul, London, United 
Kingdom. 

Jamil, R. (2019). Frictional head loss relation between 
Hazen-Williams and Darcy-Weisbach 
equations for various water supply pipe 
materials. International Journal of 
Water, 13(4), 333-347. 


