
Science and Technology Publishing (SCI & TECH) 
ISSN: 2632-1017 

Vol. 7 Issue 11, November - 2023 

www.scitechpub.org 
SCITECHP420354 2029 

Evaluation of Photovoltaic Pumped Hydroelectric Storage System 
using a Computational Approach 

 

Okon	Aniekan	Akpan1	
Emmanuel Michael2	

Umoh Akaninyene Sunday3 

1,2,3 Department of Mechanical and Aerospace Engineering  
University of Uyo, Akwa Ibom State, Nigeria 

Email: 1drokonaniekan@gmail.com 

 
Abstract— In this study, evaluation of 

Photovoltaic Pumped Hydroelectric Storage 
(PHES) system modelled using SolidWorks CAD 
simulation software is presented. The essence of 
the evaluation is to ensure that the modelled 
PHES system behavior is in consonance with the 
relevant laws governing the principles of 
operations of fluid flows. As such, the evaluation 
focused on the system pressure variation, system 
flow duration and the theoretical power 
expectations for the photovoltaic pumped 
hydroelectric storage. For the system pressure 
profile, the slice interval of approximately 0.28 m 
allowed for a smooth gradient, and the reduction 
in pressure from approximately 171.07 kPa at the 
top to 147.15 kPa at the bottom which confirms 
the accuracy of tank geometry, equation model 
and fluid density inputs. For the flow duration 
analysis, the flow values ranged from 
approximately 0.00087775 m³/s at the highest level 
to 0.00087260 m³/s at the lowest. During the 
simulation in SolidWorks CAD software, relevant 
data for the evaluation were collected. 
Furthermore, for the theoretical power 
expectations analysis, the results showed that the 
highest power input (150.15 W) corresponded with 
the topmost slice, while the lowest power input 
(128.40 W) was associated with the last slice. In 
all, the results showed that the pressure 
distribution across the water tank slices followed 
a hydrostatic pattern, confirming the accuracy of 
fluid modeling and validating the system’s layered 
approach to energy release. Also, the flow 
duration remained nearly constant across tank 
slices due to calibrated valve and nozzle 
configurations, supporting consistent energy 
delivery to the turbine. 

Keywords — Photovoltaic System,  Solidworks 
CAD Simulation Software, Hydroelectric, System 
Pressure Profile, System Flow Duration , 
Theoretical Power Expectations   

 
 
 

1. Introduction 
  In Nigeria, there is generally growing quest for 
more renewable energy systems that can be used for 
medium to high capacity loads, power systems that be 
used to power medium to large scale industries [1,2,3]. 
This is particularly necessary given the drastic rise in 
the unit cost of energy for Band A which most 
industries across Nigeria require [4,5,6].  Accordingly, 
many researchers across Nigeria are modelling and 
building different kinds of hydro power plants or 
hybrid versions requiring solar and hydro combination 
[7,8,9].  

One major drawback of the solar power is its 
stochastic nature [10,11]. As such, application of solar 
power in the hydropower system design brings up 
some design challenges.  Most solar hydro power 
design will rarely on the solar system to pump the 
water which drives the hydro turbine [12,13]. 
However, the variable nature of the solar radiations 
affect the theoretical power expectations, pressure 
variation and flow duration of the hydro turbine 
[14,15,16]. As such, proper study of these parameters 
are essential in the design of solar hydro power plant. 
This issue are addressed in this study. Requisite 
simulation software is employed to model the solar 
hydro power plant and the listed parameters are well 
studied using different simulations runs and analyzing 
the simulation results obtained. The study therefore 
will help provide the designer to understand dynamics 
of the solar hydro power plant and determine the 
actual power generated under the varying conditions 
of the system. 
 

2. Methodology 
This study focus is on the evaluation of Photovoltaic 

Pumped Hydroelectric Storage (PHES) system designed 
and modelled using SolidWorks CAD simulation software.  
The evaluation focused on the system pressure variation, 
system flow duration and theoretical power expectations for 
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Figure 11 The graph for the pressure variation at ten sections of the water tank 

 
As presented in Table 3 and Figure 11, the pressure 
distribution across the ten slices of the water tank showed a 
consistent downward trend. The topmost slice (0) recorded 
the highest pressure value, while the bottom slice (10) had 
the lowest. This trend is consistent with the hydrostatic law, 
which states that pressure in a fluid increases with depth 
due to gravitational force acting on the fluid column above. 
The slice interval of approximately 0.28 m allowed for a 
smooth gradient, and the reduction in pressure from 
approximately 171.07 kPa at the top to 147.15 kPa at the 
bottom confirms the accuracy of tank geometry, equation 
model and fluid density inputs. This pressure profile 
provides the fundamental basis for subsequent flow and 
power analysis since it dictates the available energy head 
within the system. 

3.3 Results for the PHES System Flow Duration Curve 

      The graph for the PHES system flow duration curve is 
presented in Figure 12. It shows the flow duration curve as 
water flows through a one-inch PVC pipe discharging onto 

the turbine. Each section is evenly divided into slices, with 
varying flow rates ranging from 0.00087775 to 0.00087260 
m³/s. The flow rates were determined based on the pressure, 
pipe diameter and cumulative height for each slice using the 
Copely online calculator.  
      As seen in Figure 12, the flow duration curve of the 
system revealed a slightly decreasing flow rate trend as the 
water level in the tank declined. Flow values ranged from 
approximately 0.00087775 m³/s at the highest level to 
0.00087260 m³/s at the lowest. This marginal decline in 
flow is attributed to the reduction in gravitational head, 
which in turn affects the pressure acting at the discharge 
orifice of the PVC pipe. The curve displayed a flattened 
profile, which suggests that the system is well-regulated 
and subject to minimal turbulence or flow shock. Since this 
flow profile is directly linked to turbine performance, its 
consistency across slices is a positive indication of energy 
yield predictability, especially when evaluating off-grid or 
rural applications of photovoltaic pumped hydro storage 
systems. 
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Figure 12 The graph for the PHES system flow duration curve 

           

3.4  The Results for the PHES Theoretical Power 
Output 
The theoretical power expectations for Photovoltaic 

Pumped Hydroelectric Storage using turbines 1–6, based on 
the following parameters: Slice Serial Number, Height (m), 
Flow Rate (m³/s), Slice Height (m), Power Input (W), 
Power Output (W), Controlled Power Output (W), 
Operating Time (s), Rotational Speed (rad/s), Tank 
Discharge Time (s), and Tank Recharge Time (s) are 
presented in Table 4, Table 5 and Table 6. During the 

simulation, the tank was divided into sections for analytical 
purposes.  The flow rate for each slice was determined 
using pressure, cumulative height, and pipe diameter via the 
Copely online calculator. The pressure and power input to 
the turbine were computed. The controlled power output for 
turbines 1–6 was derived from the design manual by Ovens 
(1975). The operating time used in each of the slices is 
obtained by summing the discharge time of the tank and the 
recharge time of the tank (both expressed in seconds). The 
discharge time was calculated, as well as the recharge time.  

Table 4.  Theoretical PHES Power Results (Part 1) 

Slice Height (m) Flow (m³/s) Slice Height (m) Power input (W) 
0 17.438 0.00088 0.2438 150.15 
1 17.1942 0.00088 0.2438 147.98 
2 16.9504 0.00088 0.2438 145.8 
3 16.7066 0.00088 0.2438 143.63 
4 16.4628 0.00088 0.2438 141.45 
5 16.219 0.00088 0.2438 139.28 
6 15.9752 0.00087 0.2438 137.1 
7 15.7314 0.00087 0.2438 134.1.93 

8 15.4876 0.00087 0.2438 132.75 

9 15.2438 0.00087 0.2438 130.58 

10 15 0.00087 0.2438 128.4 

TOTAL 2.438 - 
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Table 5: Theoretical PHES Power (Part 2) 

Power Output (W) Operating Time (secs) Rotational Speed (rad/s) 
Tank Discharge Time 

(secs) 
Tank Recharge Time 

(secs) 

1800 5596.8 20.94 4420.8 1176 

1770 5536.8 17.94 4390.8 1146 

1740 5516.8 16.94 4380.8 1136 

1710 5496.8 15.94 4370.8 1126 

1680 5476.8 14.1.94 4360.8 1116 

1650 5456.8 13.94 4350.8 1106 

1620 5436.8 12.94 4340.8 1096 

1590 5416.8 11.94 4330.8 1086 

1560 5396.8 10.94 4320.8 1076 

1530 5376.8  9.94 4310.8 1066 

1500 5356.8  8.94 4300.8 1056 

- 55968 - 44208 11760 

 
 

Table 6  Theoretical PHES Power (Part 3) 

Controlled Power Output (W) 

Turbine 1 Turbine 2 Turbine 3 Turbine 4 Turbine 5 Turbine 6 

200 300 600 1200 1500 300 

190 290 590 1190 1470 290 

180 280 580 1180 1440 280 

170 270 570 1170 1410 270 

160 260 560 1160 1380 260 

150 250 550 1150 1350 250 

140 240 540 1140 1320 240 

130 230 530 1130 1290 230 

120 230 520 1120 1260 220 

110 210 510 1110 1230 210 

100 200 500 1100 1200 200 

     As reported in Table 4, Table 5 and Table 6, the 
theoretical power output values for the ten water slices 
showed a direct correlation with the available hydraulic 
head. The highest power input (150.15 W) 
corresponded with the topmost slice, while the lowest 
power input (128.40 W) was associated with the last 
slice. This behavior follows the theoretical power 
equation for hydro systems, which multiplies 
gravitational head, flow rate, and water density. Six 
turbine models were analyzed with varying control 
schemes, producing outputs between 200 W and 1500 
W across slices, depending on the turbine design. 

Notably, Turbine 6 consistently yielded the highest 
controlled power output, confirming its superior 
performance characteristics under similar operating 
conditions. The rotational speed of the turbines also 
declined steadily, showing the influence of diminishing 
hydraulic energy. This theoretical output assessment 
affirms the viability of modular hydroelectric generation 
from stratified water tanks when powered by solar-
pumped input. 

4. Conclusion 
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An evaluation of some key parameters that are 
used to ascertain the performance and reliability of 
photovoltaic pumped hydroelectric storage (PHES) 
system is presented. The PHES system is modeled using 
SolidWorks CAD simulation software. During the 
simulation relevant data for the evaluation were 
collected and the parameters considered in the 
evaluation include; system pressure profile, system flow 
duration and theoretical power expectations for the 
PHES system. The results obtained showed that the 
modelled PHES system behavior is in consonance with 
the relevant laws governing the principles of operations 
of fluid flows.  

In all, the results showed that the pressure 
distribution across the water tank slices followed a 
hydrostatic pattern, confirming the accuracy of fluid 
modeling and validating the system’s layered approach 
to energy release. Also, the flow duration remained 
nearly constant across tank slices due to calibrated 
valve and nozzle configurations, supporting consistent 
energy delivery to the turbine. 
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