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Abstract — Support Vector Regression (SVR) 
model for prediction of palm kernel oil (PKO) 
extractor machine yield is presented. The essence 
of the study is to address the problem of low oil 
yield and excess wastage of raw material (palm 
kernel) associated with a case study 10-ton PKO 
extractor machine settings and the palm kernel 
moisture content.  Accordingly, a dataset 
consisting of 5000 records of the four parameters; 
moisture content of the palm kernel, shaft speed, 
and cone gap settings as the input parameters  
and the PKO yield as the output parameter. The 
dataset was used to train and validate the SVR 
model using a data split of 80% (training set) and 
20% (validation set). The results show that the 
error metrics over 80 epochs remained constant at 
0.084175 for the Mean Absolute Error (MAE), 
0.007832 for the Mean Square Error (MSE),  and 
0.992293 for the R-Squared (R^2). The results 
obtained from SHAP analysis showed that the 
feature importance value of 0.158 for the moisture 
content made it the most important feature for the 
SVR PKO yield prediction. On the other hand, the 
cone gap had 0.135 feature importance value 
which made it the least important feature among 
the three input parameters. Also, the optimal PKO 
yield of 42.7 % occurred with shaft speed of 20 
rpm, cone gap of 1.5 mm and moisture content of 
8 %. A closer examination of the optimal 
configuration using the graphical approach shows 
that the exact optimal PKO is 43.6 % and it 
occurred at main shaft speed of 18.4 rpm with 
cone gap of 1.5 mm. Essential the SVR got the 
exact cone gap setting but it deviated from the 
exact optimal PKO yield by 2.06% and from the 
exact main shaft speed by 2.17%. 

Keywords— Support Vector Regression Model, 
Palm Kernel Oil Extractor Machine, Optimal Yield, 
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1. Introduction 
 In Nigeria, palm kernel oil (PKO) 

is one of the most commonly produced and 
utilized oil at industrial scale [1,2,3]. This is due 
to the abundance of palm kernel in several parts 
of Nigeria [4,5]. There is palm oil which is 
obtained from the palm fruit and then the palm 
kernel oil which is obtained from the palm kernel 
[6,7]. This has led to the production of various 
machines to handle different aspects of the 
processing of the palm fruit and palm kernel and 
eventually the machine for the extraction of the 
PKO from the palm kernel [8.9.10].  

In this study the focus is on the palm 
kernel oil production with emphasis on the 
application of machine learning model to enhance 
the machines PKO yield by optimal configuration 
of the machine’s input parameters [11,12,13]. 
Specifically, the support vector regression (SVR) 
model is considered in this study for the 
prediction of the input parameters setting 
configuration that will always give the highest 
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4. Conclusion 
Support Vector Regression (SVR) model 

is presented for application in the prediction of 
palm kernel oil (PKO) output of a 10 ton 
extractor machine. The machine has input 
parameters such as the main shaft speed and the 
cone gap while the palm kernel parameter 
considered is the moisture of the kernel. These 
three parameters were used in the prediction of 
the PKO yield with emphasis on identifying the 
input parameter configuration that gives the 
optimal PKO yield. The results showed that the 
SVR was able to predict the optimal point with 
about 2 % deviation from the exact point. 
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