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Abstract — In this work, prediction of the yield
for a 10-ton palm kernel oil (PKO) extraction plant
using XGBOOST model is presented. The study
was meant to determine the optimal PKO yield of
the case study machine. The study was carried
out using 125-records original dataset obtained
from a case study 10-ton PKO extractor machine
located in Akwa Ibom State Nigeria. The dataset
has shaft speed value range of 14 to 18 rpm, cone
gap setting range of 0.5 to 2.5 mm and palm kernel
moisture content range of 6 % to 14 %. The PKO
yield of the extractor machine for different
combinations of the three input parameters were
captured and used in the model training. Data
augmentation was conducted using Generative
Adversarial Network (GAN) model to enhance the
data records number and thereby enhance the
model prediction performance. The XGBoost
model was trained and validated using 80 % /20 %
training to validation data split. The prediction
performance results show that the XGBoost
model has Mean Absolute Error (MAE) of 0.007832
and Mean Square Error (MSE) of 0.000028 while
the coefficient of correlation (R2) between the
actual and the predicted results was 0.999973. The
predicted optimal PKO was 43.4 % and it occurred
at shaft speed of 18 rpm, cone gap of 1.5 mm and
moisture content of 8 %. .
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1. Introduction
In recent years, owners of industrial
machines are increasing turning to artificial intelligent (AI)-
based data driven modelling to optimize the operations of
their machines [1,2,3]. This due to the superior performance
and cost effective nature of many Al models when
compared with the traditional approaches to machine

operations enhancements [4,5,6]. The Al models can also
be tuned to suit the specific machine operational dataset
[7.8].

In addition, the era of explainable Al has also
enabled the users of Al models to understand the logics
behind the decisions that are made by the Al models in
arriving at the optimal solution for the machine under study
[9,10,11]. In addition, the explainable Al models use the
feature importance to identify key features that contribute
significantly to the decision making process [12,13]. In this
way, the user can focus on collecting the data on the few
identified important features which will cut down on the
cost and labour committed to data collection and
processing. Moreover, the Al models will also utilize the
fewer number of features to realize high prediction
accuracy thereby minimizing the model execution time
while maintaining high accuracy due to the use of fewer
number of features identified through feature importance
analysis.

In view of these salient reasons, this work is
focused on applying XGBoost model in the determination
of the machine input parameters configurations that will
give the optimal output from the machine. Specifically, a
palm kernel oil (PKO) extractor machine is studied and the
XGBoost model is trained and evaluated using the
empirically collected dataset from the case study machine
[14,15]. At the end, the XGBoost model is used to
determine the combination of the input parameter settings
that will give the optimal yield of the PKO from the
machine. The outcome of the study will minimize losses
and enhance productivity and profitability of the machine.

2. Methodology
2.1 Development of the XGBoost Model

The XGBoost (Extreme Gradient Boosting) is an

advanced machine learning algorithm which is based on

www.scitechpub.org

SCITECHP420356

2051



Science and Technology Publishing (SCI & TECH)
ISSN: 2632-1017
Vol. 9 Issue 2, February - 2025

gradient boosting, optimized for speed and accuracy. In this
work, the XGBoost model (with the architecture as
captured in Figure 1) is used to model the relationship
between shaft speed, cone gap, and moisture content to
predict the oil yield for a palm kernel oil (PKO) extracting
machine.

Generally, the XGBoost builds an ensemble of
weak learners (decision trees) in a stage-wise manner,
optimizing the loss function using gradient descent

approach. The XGboost model predicts the oil yield (9) as
the sum of multiple decision trees as follows;
Y=Y filx), ff€F (1)

Where, ¥; is the predicted oil yield, f;(x;) is the decision
tree at iterationt, F is the space of all regression trees, and
T is the total number of trees. The XGBoost optimal
solution can be expressed as:

L= Zé\’:l Ly 9) + Zt- 0(f) (2)
Where, L(y;, J;) is the loss function measuring error, w(f;)
is the regularization term to control complexity.

Dataset _ | Training Data Training Data Training
for Model ™ Sample1 Sample 2 eoe Data
Training Sample n
Tree 1 Tree 2 Treen
y y
Prediction of P rfe(!iction of ]I)’:;(:lif)tlio;r(;i
Decision Tree 1 Decision Tree 2 n
Dataset
for Model
Testing

Prediction Results

Summation of

Final Prediction
Result of the
XGBoost Model

Figure 1 The XGBoost (Extreme Gradient Boosting) Model Architecture

For regression problems like oil yield prediction, the
XGBoost typically uses Mean Squared Error (MSE) as the
loss function, where:

o) =i =9 ° 3)
The regularization term is computed as:
W(f) =yT +5ATh W} @)

Where, T denotes number of leaf nodes in the tree, w; is the
leaf weight, y is the complexity penalty for each leaf, and
A = L2 regularization coefficient (prevents overfitting).
This balances prediction accuracy and model complexity.
The gradient boosting update rule utilized in the study is
expressed with respect to the learning rate as 7, as follows:

9 =9 4 nf, () 6)
Where, f;(x;) is used to indicate the new tree trained on
residuals. Each new tree corrects the residuals from
previous trees.

Also, the study also considered the feature importance
of the input parameters for the PKO yield prediction.
Particularly, the XGBoost assigns importance scores to the
features (shaft speed, cone gap, and moisture content) by

measuring:
1. Gain (how much a feature improves the model)
ii. Coverage (how many times a feature is used in
splits)
1ii. Weight (how frequently a feature appears in trees)

These scores help identify the most influential parameters
in oil yield prediction. Given the input parameters: x; =
Shaft Speed, x, = Cone Gap and x; = Moisture Content,
then the XGBoost constructs a function as follows:

Y = f(x1,%2,%3) (6)
which is learned through gradient boosting, iteratively
refining predictions. The XGBoost uses a second-order
approximation (Taylor Expansion) to optimize the loss as
follows:
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Where, g; =

LO = B [9ifeed + 32 G| + 0D ()

oly9i)

(first derivative), and h;

— 2 1(yi.90)
89?2

(second derivative). This makes training more efficient. The
summary of the XGBoost model’s hyperparameters and

their values are presented in Table 1.

Table 1 The Hyperparameter settings for the XGBoost Model

Hyperparameter Value
N_estimators 100
Maximum depth 6
Learning rate 0.05
Random state 42

The study was carried out using 125 original data
records (Table 2) obtained from a case study 10-ton PKO
extractor machine located in Akwa Ibom State Nigeria. The
data has shaft speed range of 14 to 18 rpm, cone gap setting
rage of 0.5 to 2.5 mm and palm kernel moisture content
range of 6 to 14 %. The PKO yield of the extractor machine
for different combinations of the three input parameters

were captured and used in the study. Data augmentation
was conducted to enhance the data records number and
thereby enhance the model prediction performance.

Table 2 The 125 Original Data Records Obtained from the Case Study 10-Ton PKO Extractor Machine

Main Moisture Oil Main Moisture Oil
S/No, Shat Cone Content Yield S/No, Shatt Cone Content Yield
Speed | Gap(mm) (%) (%) Speed | Gap(mm) (%) (%)
(RPM) (RPM)
1 14 0.5 6 35.9 63 18 1.5 10 43.1
2 14 0.5 8 373 64 18 1.5 12 42.8
3 14 0.5 10 36.6 65 18 1.5 14 42.5
4 14 0.5 12 35.9 66 18 2 6 40.4
5 14 0.5 14 33.8 67 18 2 8 41.7
6 14 1 6 36.6 68 18 2 10 414
7 14 1 8 38 69 18 2 12 41.1
8 14 1 10 373 70 18 2 14 40.8
9 14 1 12 36.6 71 18 2.5 6 38.9
10 14 1 14 35.9 72 18 2.5 8 40
11 14 1.5 6 373 73 18 2.5 10 39.7
12 14 1.5 8 38.7 74 18 2.5 12 394
13 14 1.5 10 38 75 18 2.5 14 39.1
14 14 1.5 12 373 76 20 0.5 6 39.8
15 14 1.5 14 36.6 77 20 0.5 8 41.3
16 14 2 6 36.6 78 20 0.5 10 41
17 14 2 8 373 79 20 0.5 12 40.7
18 14 2 10 36.6 80 20 0.5 14 40.4
19 14 2 12 35.9 81 20 1 6 40.9
20 14 2 14 352 82 20 1 8 41.6
21 14 2.5 6 352 83 20 1 10 41.3
22 14 2.5 8 35.9 84 20 1 12 41
23 14 2.5 10 352 85 20 1 14 40.7
24 14 2.5 12 34.2 86 20 1.5 6 41.4
25 14 2.5 14 33.8 87 20 1.5 8 42.4
26 16 0.5 6 35.9 88 20 1.5 10 42.1
27 16 0.5 8 38.6 89 20 1.5 12 41.8
28 16 0.5 10 36.4 90 20 1.5 14 41.5
29 16 0.5 12 355 91 20 2 6 40.8
30 16 0.5 14 34.6 92 20 2 8 42.6
31 16 1 6 36.8 93 20 2 10 42.3
32 16 1 8 37.1 94 20 2 12 42
33 16 1 10 36.4 95 20 2 14 41.7
34 16 1 12 35.7 96 20 2.5 6 40.2
35 16 1 14 35 97 20 2.5 8 42
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36 16 1.5 6 373 98 20 2.5 10 41.7
37 16 1.5 8 383 99 20 2.5 12 41.4
38 16 1.5 10 37.6 100 20 2.5 14 41.1
39 16 1.5 12 36.9 101 22 0.5 6 39.5
40 16 1.5 14 36.2 102 22 0.5 8 39.8
41 16 2 6 36.5 103 22 0.5 10 39.5
42 16 2 8 37.1 104 22 0.5 12 39.2
43 16 2 10 36.4 105 22 0.5 14 38.9
44 16 2 12 35.7 106 22 1 6 40.3
45 16 2 14 35 107 22 1 8 40.8
46 16 2.5 6 353 108 22 1 10 40.5
47 16 2.5 8 359 109 22 1 12 40.2
48 16 2.5 10 355 110 22 1 14 39.9
49 16 2.5 12 349 111 22 1.5 6 41.1
50 16 2.5 14 343 112 22 1.5 8 42
51 18 0.5 6 38.8 113 22 1.5 10 41.5
52 18 0.5 8 40.1 114 22 1.5 12 41
53 18 0.5 10 40.3 115 22 1.5 14 40.5
54 18 0.5 12 39.8 116 22 2 6 40.1
55 18 0.5 14 393 117 22 2 8 40.5
56 18 1 6 394 118 22 2 10 40.2
57 18 1 8 41.2 119 22 2 12 39.9
58 18 1 10 40.9 120 22 2 14 39.6
59 18 1 12 40.5 121 22 2.5 6 384
60 18 1 14 40.1 122 22 2.5 8 38.8
61 18 1.5 6 42.1 123 22 2.5 10 38.5
62 18 1.5 8 43.4 124 22 2.5 12 38.2
63 18 1.5 10 43.1 125 22 2.5 14 37.9

3. Results and discussion

3.1 The Results of the impact of the inputs and the

predicted oil yields for the XGBoost

The augmented dataset from the PKO extractor
machined was normalized and then used to train and
validate the XGBoost model using 80/20 % training to
validation data split. The results of the average impact of
the inputs on the XGBoost model output are shown in
Figure 3. It shows that moisture content has the highest

impact on the XGBOOST model output. Also, the results of
the error metrics over epochs for the XGBOOST model are
shown in Table 3 and Figure 3. The line chart of the actual
versus predicted oil yields for the XGBOOST model is
shown in Figure 4. The results show that the Mean
Absolute Error (MAE) is 0.007832 and Mean Square Error
(MSE) is 0.000028 while the coefficient of correlation (R2)
between the actual and the predicted results is 0.999973.
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Figure 2: Average impact of the inputs on the XGBoost model output
Table 3 The Results of the Error Metrics over Epochs for the XGBoot Model

Epoch MAE MSE R2
0 0.003186 0.000028
20 0.003186 0.000028 0.999973
40 0.003186 0.000028 0.999973
60 0.003186 0.000028 0.999973
80 0.003186 0.000028 0.999973
100 0.003186 0.000028 0.999973
Error Metrics vs Epochs for XGBoost
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Figure 3 The Plot of the Error Metrics Over Epochs for the XGBoost model
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Actual vs Predicted Oil Yield
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Figure 4: The Line Chart of the Actual Versus Predicted Oil Yields for the XGBOOST Model

3.2 The Results of the Oil Yield for Various Input
Variables Configurations for the XGBoost
Model
The results obtained from the XGBOOST model
predictions as presented in Figure 5 to Figure 9 show that

0il Yield vs Cone Gap (sha

speed = 14)

the optimal PKO is 43.4 % and it occurred in Figure 7
having the input parameter setting with shaft speed of 18
rpm, cone gap of 1.5 mm and moisture content of 8 %.

{(sp = 14, ¢g = 1.50, mc = 8, oy = 38.7)|

37 4

moisture_content
maoisture_content = 6
maoisture_content = 8
maoisture_content = 10
moisture_content = 12
moisture_content = 14

—e
—
e
—a
—»—

3
S 36

35 1

34 4

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.'50
Cone Gap
Figure 5: O1l yield versus cone gap at shaft speed = 14rpm and varying moisture content
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Oil Yield vs Cone Gap (shaft_speed = 16)
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Figure 6: Oil yield versus cone gap at shaft speed = 16rpm and varying moisture content
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Figure 7: O1l yield versus cone gap at shaft speed = 18rpm and varying moisture content
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Oil Yield vs Cone Gap (shaft_speed = 20)
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Figure 8: Oil yield versus cone gap at shaft speed = 20rpm and varying moisture content

Oil Yield vs Cone Gap (shaft_speed = 22)
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Figure 9: Oil yield versus cone gap at shaft speed = 22rpm and varying moisture content
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PKO Yield (%) at cone gap of 1.5 mm and shaft speed of 18 rpm
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Figure 10 PKO yield versus palm kernel moisture content at cone gap of 1.5 mm and shaft speed of 18 rpm

4. Conclusion
The XGBoost model is presented for prediction of
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