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Abstract — In this work, prediction of the yield 
for a 10-ton palm kernel oil (PKO) extraction plant 
using XGBOOST model is presented. The study 
was meant to determine the optimal PKO yield of 
the case study machine. The study was carried 
out using 125-records original dataset obtained 
from a case study 10-ton PKO extractor machine 
located in Akwa Ibom State Nigeria. The dataset 
has shaft speed value range of 14 to 18 rpm, cone 
gap setting range of 0.5 to 2.5 mm and palm kernel 
moisture content range of 6 % to 14 %. The PKO 
yield of the extractor machine for different 
combinations of the three input parameters were 
captured and used in the model training. Data 
augmentation was conducted using Generative 
Adversarial Network (GAN) model to enhance the 
data records number and thereby enhance the 
model prediction performance. The XGBoost 
model was trained and validated using 80 % /20 % 
training to validation data split.  The prediction 
performance results show that the XGBoost 
model has Mean Absolute Error (MAE) of 0.007832 
and Mean Square Error (MSE) of 0.000028 while 
the coefficient of correlation (R2) between the 
actual and the predicted results was 0.999973. The 
predicted optimal PKO was 43.4 % and it occurred 
at shaft speed of 18 rpm, cone gap of 1.5 mm and 
moisture content of 8 %.  . 
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1. Introduction
In recent years, owners of industrial 

machines are increasing turning to artificial intelligent (AI)-
based data driven modelling to optimize the operations of 
their machines [1,2,3]. This due to the superior performance 
and cost effective nature of many AI models when 
compared with the traditional approaches to machine 

operations enhancements [4,5,6]. The AI models can also 
be tuned to suit the specific machine operational dataset 
[7,8]. 

In addition, the era of explainable AI has also 
enabled the users of AI models to understand the logics 
behind the decisions that are made by the AI models in 
arriving at the optimal solution for the machine under study 
[9,10,11]. In addition, the explainable AI models use the 
feature importance to identify key features that contribute 
significantly to the decision making process [12,13]. In this 
way, the user can focus on collecting the data on the few 
identified important features which will cut down on the 
cost and labour committed to data collection and 
processing. Moreover, the AI models will also utilize the 
fewer number of features to realize high prediction 
accuracy thereby minimizing the model execution time 
while maintaining high accuracy due to the use of fewer 
number of features identified through feature importance 
analysis.  

In view of these salient reasons, this work is 
focused on applying XGBoost model in the determination 
of the machine input parameters configurations that will 
give the optimal output from the machine. Specifically, a 
palm kernel oil (PKO) extractor machine is studied and the 
XGBoost model is trained and evaluated using the 
empirically collected dataset from the case study machine 
[14,15]. At the end, the XGBoost model is used to 
determine the combination of the input parameter settings 
that will give the optimal yield of the PKO from the 
machine. The outcome of the study will minimize losses 
and enhance productivity and profitability of the machine. 

2. Methodology
2.1   Development of the XGBoost Model 

The XGBoost (Extreme Gradient Boosting) is an 
advanced machine learning algorithm which is based on 
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gradient boosting, optimized for speed and accuracy. In this 
work, the XGBoost model (with the architecture as 
captured in Figure 1)  is used to model the relationship 
between shaft speed, cone gap, and moisture content to 
predict the oil yield for a palm kernel oil (PKO) extracting 
machine.  

Generally, the XGBoost builds an ensemble of 
weak learners (decision trees) in a stage-wise manner, 
optimizing the loss function using gradient descent 

approach. The XGboost model predicts the oil yield ሺ𝑦ොሻ as 
the sum of multiple decision trees as follows; 

𝑦ො௜ ൌ ∑ 𝑓௧ሺ𝑥௜ሻ, 𝑓௧ ∈ 𝐹 ்
௧ୀଵ  (1) 

Where, 𝑦ො௜  is the predicted oil yield, 𝑓௧ሺ𝑥௜ሻ is the decision 
tree at iteration𝑡, 𝐹 is the space of all regression trees, and 
𝑇  is the total number of trees. The XGBoost optimal 
solution can be expressed as: 

𝐿 ൌ ∑ 𝑙ሺ𝑦௜, 𝑦ො௜ሻ
ே
௜ୀଵ ൅ ∑ 𝜔ሺ𝑓௧ሻ்

௧ୀଵ   (2) 
Where, 𝑙ሺ𝑦௜, 𝑦ො௜ሻ is the loss function measuring error, 𝜔ሺ𝑓௧ሻ 
is the regularization term to control complexity. 

 
Figure 1  The XGBoost (Extreme Gradient Boosting) Model Architecture 

For regression problems like oil yield prediction, the 
XGBoost typically uses Mean Squared Error (MSE) as the 
loss function, where: 

𝑙ሺ𝑦௜, 𝑦ො௜ሻ ൌ ሺ𝑦௜ െ 𝑦ො௜ሻ ଶ   (3) 
The regularization term is computed as: 

𝜔ሺ𝑓௧ሻ ൌ 𝛾𝑇 ൅
ଵ

ଶ
𝜆 ∑ 𝑤௝

ଶ௅
௝ୀଵ    (4) 

Where, 𝑇 denotes number of leaf nodes in the tree, 𝑤௝ is the 

leaf weight, 𝛾 is the complexity penalty for each leaf, and 
𝜆 ൌ 𝐿2  regularization coefficient (prevents overfitting). 
This balances prediction accuracy and model complexity. 
The gradient boosting update rule utilized in the study is 
expressed with respect to the learning rate as 𝜂, as follows: 

𝑦ො௜
ሺ௧ାଵሻ ൌ 𝑦ො௜

ሺ௧ሻ ൅ 𝜂𝑓௧ሺ𝑥௜ሻ  (5) 

Where, 𝑓௧ሺ𝑥௜ሻ is used to indicate the new tree trained on 
residuals. Each new tree corrects the residuals from 
previous trees. 

Also, the study also considered the feature importance 
of the input parameters for the PKO yield prediction. 
Particularly, the XGBoost assigns importance scores to the 
features (shaft speed, cone gap, and moisture content) by 
measuring: 

i. Gain (how much a feature improves the model) 
ii. Coverage (how many times a feature is used in 

splits) 
iii. Weight (how frequently a feature appears in trees) 
These scores help identify the most influential parameters 
in oil yield prediction. Given the input parameters: 𝑥ଵ = 

Shaft Speed,  𝑥ଶ = Cone Gap  and  𝑥ଷ = Moisture Content, 
then the XGBoost constructs a function as follows: 

𝑦ො ൌ 𝑓ሺ𝑥ଵ, 𝑥ଶ, 𝑥ଷሻ  (6) 
which is learned through gradient boosting, iteratively 
refining predictions. The XGBoost uses a second-order 
approximation (Taylor Expansion) to optimize the loss as 
follows: 
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36 16 1.5 6 37.3 98 20 2.5 10 41.7 
37 16 1.5 8 38.3 99 20 2.5 12 41.4 
38 16 1.5 10 37.6 100 20 2.5 14 41.1 
39 16 1.5 12 36.9 101 22 0.5 6 39.5 
40 16 1.5 14 36.2 102 22 0.5 8 39.8 
41 16 2 6 36.5 103 22 0.5 10 39.5 
42 16 2 8 37.1 104 22 0.5 12 39.2 
43 16 2 10 36.4 105 22 0.5 14 38.9 
44 16 2 12 35.7 106 22 1 6 40.3 
45 16 2 14 35 107 22 1 8 40.8 
46 16 2.5 6 35.3 108 22 1 10 40.5 
47 16 2.5 8 35.9 109 22 1 12 40.2 
48 16 2.5 10 35.5 110 22 1 14 39.9 
49 16 2.5 12 34.9 111 22 1.5 6 41.1 
50 16 2.5 14 34.3 112 22 1.5 8 42 
51 18 0.5 6 38.8 113 22 1.5 10 41.5 
52 18 0.5 8 40.1 114 22 1.5 12 41 
53 18 0.5 10 40.3 115 22 1.5 14 40.5 
54 18 0.5 12 39.8 116 22 2 6 40.1 
55 18 0.5 14 39.3 117 22 2 8 40.5 
56 18 1 6 39.4 118 22 2 10 40.2 
57 18 1 8 41.2 119 22 2 12 39.9 
58 18 1 10 40.9 120 22 2 14 39.6 
59 18 1 12 40.5 121 22 2.5 6 38.4 
60 18 1 14 40.1 122 22 2.5 8 38.8 
61 18 1.5 6 42.1 123 22 2.5 10 38.5 
62 18 1.5 8 43.4 124 22 2.5 12 38.2 
63 18 1.5 10 43.1 125 22 2.5 14 37.9 

3. Results and discussion 
3.1 The Results of the impact of the inputs and the 

predicted oil yields for the XGBoost 
The augmented dataset from the PKO extractor 

machined was normalized and then used to train and 
validate the XGBoost model using 80/20 % training to 
validation data split.  The results of the average impact of 
the inputs on the XGBoost model output are shown in 
Figure 3. It shows that moisture content has the highest 

impact on the XGBOOST model output. Also, the results of 
the error metrics over epochs for the XGBOOST model are 
shown in Table 3 and Figure 3. The line chart of the actual 
versus predicted oil yields for the XGBOOST model is 
shown in Figure 4. The results show that the Mean 
Absolute Error (MAE) is 0.007832 and Mean Square Error 
(MSE) is 0.000028 while the coefficient of correlation (R2) 
between the actual and the predicted results is 0.999973. 
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