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Abstract Deep Reinforcement Learning and 

Non-Dominated Sorting Genetic Algorithm II 
(NSGA-II) hybrid model optimization of reactive 
power on a power transmission system: Case 
Study of the IEEE 14-bus network is presented. 
The resultant model from the DRL and NSGA-II is 
referred to as the DRL + NSGA-II hybrid model. 
The DRL + NSGA-II hybrid model introduces a 
multi-objective optimization strategy that 
enhances the energy management capabilities of 
conventional DRL models. While DRL learns 
policies through interaction with the environment, 
NSGA-II facilitates Pareto-optimal selection of 
dispatch configurations, simultaneously 
minimizing both active and reactive losses. The 
results show that the slack generator, Bus 1, 
maintains the highest active power surplus at 
91.899 MW. This trend continues with moderate 
surpluses across: Bus 2: 43.974 MW, Bus 3: 
38.878 MW, Bus 6: 33.591 MW, Bus 8: 33.685 MW. 
On the deficit side (negative values of 
P_mismatch), buses 4 to 14 show remarkably 
consistent levels of power demand, with most 
values clustered tightly around – 𝟐𝟗 𝑴𝑾 . This 
consistency indicates that the hybrid optimization 
strategy has successfully pushed the power 
system toward global load balance, with minimal 
deviation among buses. In all the results indicate 
that the hybrid optimization strategy has 
successfully pushed the power system toward 
global load balance, with minimal deviation 
among buses. Also, the results show that the DRL 
+ NSGA-II hybrid model provided well-balanced 
dispatch strategy, devoid of congestion or over-
saturation on critical links, which indicates 
effective exploration of state-action spaces by the 

DRL agent and optimal tuning from the NSGA-II 
layer. 
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Network, Non-Dominated Sorting Genetic 
Algorithm II (NSGA-II), Power Transmission 
System 

 
1. Introduction 

 As the both population grows in every 
nation across the globe, there comes growing demand for 
energy to support the growing population [1,2,3]. Also, the 
advancements in technologies have also increased the 
dependence on energy dependent technologies [4,5]. This 
makes it more imperative that efficient power generation, 
transmission and distribution systems are required to satisfy 
the growing demand [6.7].  

In this work, the focus is on addressing the 
challenges that emanate from imbalance in the reactive 
power in the transmission network [8,9]. The reactive 
power problem can lead to high power loss, poor voltage 
profile and also instability in the power system [10]. The 
solution to reactive power control has been on for several 
years. However, in recent years, machine learning models 
and other intelligent algorithms have been widely adopted 
in power system solutions development [11,12]. In this 
work, Deep Reinforcement Learning and Non-Dominated 
Sorting Genetic Algorithm II (NSGA-II) hybrid model is 
presented for optimizing the reactive power in a 
transmission network [13.14]. In the DRL + NSGA-II 
hybrid model, the NSGA-II which is a multi-objective 
evolutionary algorithm, complements the learning 
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