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Abstract Deep Reinforcement Learning and
Non-Dominated Sorting Genetic Algorithm |II
(NSGA-Il) hybrid model optimization of reactive
power on a power transmission system: Case
Study of the IEEE 14-bus network is presented.
The resultant model from the DRL and NSGA-II is
referred to as the DRL + NSGA-Il hybrid model.
The DRL + NSGA- hybrid model introduces a
multi-objective optimization strategy  that
enhances the energy management capabilities of
conventional DRL models. While DRL learns
policies through interaction with the environment,
NSGA-Il facilitates Pareto-optimal selection of
dispatch configurations, simultaneously
minimizing both active and reactive losses. The
results show that the slack generator, Bus 1,
maintains the highest active power surplus at
91.899 MW. This trend continues with moderate
surpluses across: Bus 2: 43.974 MW, Bus 3:
38.878 MW, Bus 6: 33.591 MW, Bus 8: 33.685 MW.
On the deficit side (negative values of
P_mismatch), buses 4 to 14 show remarkably
consistent levels of power demand, with most
values clustered tightly around -29 MW . This
consistency indicates that the hybrid optimization
strategy has successfully pushed the power
system toward global load balance, with minimal
deviation among buses. In all the results indicate
that the hybrid optimization strategy has
successfully pushed the power system toward
global load balance, with minimal deviation
among buses. Also, the results show that the DRL
+ NSGA-I hybrid model provided well-balanced
dispatch strategy, devoid of congestion or over-
saturation on critical links, which indicates
effective exploration of state-action spaces by the

DRL agent and optimal tuning from the NSGA-II
layer.
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1. Introduction
As the both population grows in every

nation across the globe, there comes growing demand for
energy to support the growing population [1,2,3]. Also, the
advancements in technologies have also increased the
dependence on energy dependent technologies [4,5]. This
makes it more imperative that efficient power generation,
transmission and distribution systems are required to satisfy
the growing demand [6.7].

In this work, the focus is on addressing the
challenges that emanate from imbalance in the reactive
power in the transmission network [8,9]. The reactive
power problem can lead to high power loss, poor voltage
profile and also instability in the power system [10]. The
solution to reactive power control has been on for several
years. However, in recent years, machine learning models
and other intelligent algorithms have been widely adopted
in power system solutions development [11,12]. In this
work, Deep Reinforcement Learning and Non-Dominated
Sorting Genetic Algorithm II (NSGA-II) hybrid model is
presented for optimizing the reactive power in a
transmission network [13.14]. In the DRL + NSGA-II
hybrid model, the NSGA-II which is a multi-objective
evolutionary  algorithm, complements the learning
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dynamics of Deep Reinforcement Learning (DRL) by
guiding the model toward a Pareto-optimal frontier that
balances active and reactive power mismatch across the
grid.
2. Methodology

The study presents an approach to reactive power
optimization for the IEEE 14-bus network using a
combination of the Deep Reinforcement Learning (DRL)
and Non-Dominated Sorting Genetic Algorithm I (NSGA-
IT) models. The hybrid model derived from the integration
of the DRL and NSGA-II algorithm is referred to as the
DRL + NSGA-II model. In this case, the NSGA-II (Non-
dominated Sorting Genetic Algorithm II), a multi-objective
evolutionary  algorithm, complements the learning
dynamics of Deep Reinforcement Learning (DRL) by
guiding the model toward a Pareto-optimal frontier that

balances active and reactive power mismatch across the
grid.

The system model for the hybrid intelligent
mechanism for optimizing the reactive power in distributed
grid networks is as shown in Figure 1. The methodology is
structured into three interconnected phases: (i) development
of predictive models using advanced machine learning
technique based on the Deep Reinforcement Learning
(DRL) model; (i) implementation of standalone
metaheuristic optimization algorithms based on Non-
dominated Sorting Genetic Algorithm II (NSGA-II); and
(iii) integration of predictive learning with optimization
strategies to enhance grid stability and control accuracy.
Each phase is designed to contribute incrementally to the
overall goal of achieving efficient and dynamic reactive
power management underLarying grid conditions.

e —— [ — — I

Preprocessin | | I
P . b pre NSGA-II | |~ Output
I | | |
[ I I
Dataset The Al The Optimizer
Figure 1: The system model
2.1 Dataset Pre-processing To ensure learning stability and convergence across

The effectiveness of learning-based reactive power
optimization mechanisms depends critically on the quality
and structure of input data. One of the data processing
action performed is the missing or noisy data handling. In
real-world power system data, missing or anomalous
readings can distort optimization outcomes. Let the raw
dataset be denoted as:

D = {(x, y) L, (D)
Where, x; € R% is the feature vector (e.g., voltage V, active
power P, reactive power Q), y; € R is the target quantity at
timestamp i .
interpolated as:

The missing values x;(j) = NaN are

xi(i) — xi—l(j) + xi+1(});xi—1(1) (2)

If prior data is available, then forward fill can be applied as:
x()=x-40G) Q)
The noise €;~N (0,52) in time series is mitigated using a
Savitzky—Golay filter, denoted as:
X = Yk=—w CkXitk “)
Where, w is the window size and ¢, are smoothening
polynomial coefficients.

optimization models, features are normalized to comparable
scales. Let xU) represent j* feature, then min-max
normalization is given as:
. D _mi j .

xi(])’ = mazéx(f)r;lirrl:icri]()x)(j))' xl'(]), € [0’ 1] (5)
Where, xi(j Y is the normalized jt" feature at timestamp i.
The normalized features include: Voltage magnitudes
V; €[0.95,1.05], Power Demand Pp;, Qp;, and Power
Generation Pg ;. Q¢ ;. This transformation is essential for
LSTM input gates and DRL network gradients.
2.2 The Deep Reinforcement Learning (DRL) Model

The diagram of the framework for the DRL model

is shown in Figure 2. The framework in Figure 2 identifies
the agent and the environment as key components that
engage in iterative process of capturing State of the
environment, formulating control Action and Reward in
response to the State and reward policy. The Action
performed alters the State which is updated and the process
repeats.

www.scitechpub.org

SCITECHP420363

2074



Science and Technology Publishing (SCI & TECH)
ISSN: 2632-1017
Vol. 9 Issue 5, May - 2025

DRL
Agent

State

Action

. Environment [«

a

Figure 2 The diagram of framework for the DRL Model

Specifically, the key components and procedure of the DRL
model can be explained as follows:

i The environment: The environment represents a
dynamic system with parameters that need to be
monitored and control. In this case the power
network like the IEEE 14-bus network is the
dynamic system or the physical system with
parameters that are being monitored and controlled
by the DRL.

il. The agent: This is what carries out the continuous
monitoring of the environment. It interacts with
the dynamic system as well as collect requisite
information and also passes information to the
system

fii. The state: This is the set of information that
describe the condition or state of the environment.
The agent collects the State of the environment.

iv. The action: The agent provides the control signal
which specifies the control action to be carried out
in response to the received state of the
environment and the reward policy or function.
After performing the action, new state is generated
and the corresponding reward. With new set of
state and reward, the agent updates the DRL
framework and continues the process again
(iteratively) until the desired result is obtained.

2.3 The Deep Reinforcement Learning (DRL) and
Non-Dominated Sorting Genetic Algorithm II
(NSGA-II) Hybrid Model

In modern smart grids, the reactive power control
problem is inherently multi-objective. Operators must
balance conflicting objectives such as: minimization of
power losses (to reduce operational cost and thermal
stress); voltage profile regulation (to ensure stability and

optimization fails to capture these trade-offs. Thus, a Multi-
Objective Evolutionary Algorithm (MOEA) is employed to
obtain a Pareto-optimal set of non-dominated solutions. The
MOEA approach used in this work is NSGA-II which
stands for Non-dominated Sorting Genetic Algorithm II. In
this case, the DRL learns control policies m(s) = a from
experience, while the NSGA-II performs offline multi-
objective tuning of
1. Action selections or AQ vectors
il. Reward shaping parameters
ii. Policy hyperparameters

Specifically, the DRL learns value function Q(s, a; 8) and
extracts policy candidate {a;} form policy network, then
finally define multi-objective function over each a; as;
f1(a;) = Simulated power loss from applying a;
f>(a;) = Voltage deviation induced by a;
f5(a;) = Control ef fort (e.g.capacitor operation)

(6)

Hence, the NSGA-II filter optimal action is taken as:
Apareto = NSGA — 11({a;}) (7

3. Results and Discussion

The results from Table 1 and Figure 3 reflect the
performance of the DRL + NSGA-II hybrid approach
applied to power mismatch minimization in the IEEE 14-
bus system. The results show that the slack generator, Bus
1, maintains the highest active power surplus at 91.899
MW. This trend continues with moderate surpluses across:
Bus 2: 43.974 MW, Bus 3: 38.878 MW, Bus 6: 33.591
MW, Bus 8: 33.685 MW. On the deficit side (negative
values of P_mismatch), buses 4 to 14 show remarkably
consistent levels of power demand, with most values
clustered tightly around —29 MW . This consistency
indicates that the hybrid optimization strategy has
successfully pushed the power system toward global load
balance, with minimal deviation among buses. For
Q_mismatch (MVAR), the results show a similar flattening.
All other buses fluctuate mildly within £12.6 MVAR,

reliability); and minimization of control effort or capacitor reinﬁqﬁc?ng the  network’s  reactive  compensation
switching frequency. The traditional single-objective equitibrium.
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Table 1: The results of the Per-Bus Power Mismatch for the DRL + NSGA-II Hybrid Model

Bus ID P_mismatch (MW) Q_mismatch (MVAR)
1 91.899 34.021
2 43.974 13.383
3 38.878 10.940
4 -29.626 -12.510
5 -29.034 -12.560
6 33.591 8.352
7 -29.472 -12.565
8 33.685 3.149
9 -29.345 -12.521
10 -29.625 -12.559
11 -29.507 -12.450
12 -29.330 -12.459
13 -29.220 -12.560
14 -29.443 -12.638

Per-Bus Power Mismatch - DRL + NSGA-II

804

60 o

Power Mismatch

20

338

| lrr"rlrrrrrr

. P_mismatch (MW)
m Q_mismatch (MVAR)

'\ > \

Bus 1D

Figure 3: Per-Bus Power Mismatch (DRL + NSGA-II Hybrid)

In Table 2, detailed quantitative outcomes for
active/reactive power flows and losses are recorded for each
transmission line, while Figures 4 and Figures 5 offer visual
representations of directional load flow and the magnitude
of losses. The DRL + NSGA-II model preserves a realistic
and efficient distribution of power throughout the network:

i.  Major energy routes include line 1-5 (207.506
MW) and line 6-11 (104.237 MW), which reflect
the backbone of power delivery from generators to
mid-network and downstream buses.

il. Lines 24 (122.903 MW) and 2-5 (121.732 MW)
are similarly heavily loaded, reinforcing the role of
bus 2 as a critical relay node.

iii. Minimal power flows are recorded on 4-7, 4-9,
and 7-9, maintaining their peripheral roles as
feeders to fringe nodes.

The flow distribution visualization in Figure 4 confirms a
well-balanced dispatch strategy, devoid of congestion or
over-saturation on critical links, which indicates effective
exploration of state-action spaces by the DRL agent and
optimal tuning from the NSGA-II layer.

Table 2: DRL + NSGA-II based line flow demand and loss

From- Active Power Reactive Power Active Power Reactive Power Total Power

To Flow (MW) Flow (MVAR) Loss (MW) Loss (MVAR) Loss

12 78.790 34312 121.310 423.660 440.646

1-5 207.506 80.966 2581.708 10996.109 11409.543
2-3 8.547 3.898 4.522 18.708 19.785

2-4 122.903 43.688 971.525 2998.627 3102.293
2-5 121.732 44.189 939.510 2915.078 3021.654
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34 111.646 40.046 959.113 2553.835 2669.247
4-5 -0.955 0.088 0.010 0.034 0.037
4-7 -0.238 0.096 0.000 0.011 0.011
4-9 -0.441 0.017 0.000 0.106 0.106
5-6 -103.922 -34.949 0.000 3269.807 3269.807
6-11 104.237 34.742 1218.173 2569.503 2687.676
6-12 103.939 34.882 1557.327 3253.568 3408.510
6-13 103.838 35.143 835.108 1657.993 1758.392
7-8 -103.523 -26.600 0.000 2157.730 2157.730
79 -0.208 -0.074 0.000 0.005 0.005
9-10 0.456 0.065 0.006 0.017 0.019
9-14 0.127 0.190 0.006 0.013 0.015
10-11 -0.197 -0.172 0.004 0.013 0.015
12-13 -0.174 0.148 0.011 0.010 0.013
13-14 0.330 0.123 0.022 0.046 0.052

DRL + NSGA-II - Line Active and Reactive Power Flow
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DRL + NSGA-Il - Line Power Losses
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Figure 5: DRL + NSGA-II based line losses

One of the most compelling outcomes of the hybrid
DRL + NSGA-II framework is its ability to drive down
both active and reactive line losses:

i Line 1-5 incurs 11,409.543 MVA in total losses,
which is a reduction over DRL alone (12,086.799
MVA) and even slightly better than DRL + PSO
(11,788.529 MVA), signifying that NSGA-II was
able to evolve more loss-efficient transmission
states.

il. Similarly, losses on key lines such as: 2-4:
3102.293 MVA, 6—-12: 3408.510 MVA, and 6—13:
1758.392 MVA show measurable reductions
compared to standalone DRL and other hybrids,
demonstrating NSGA-II’s contribution in refining
DRL’s policy trajectory toward lower-loss
operational regions.

Low-loss lines such as 9-10, 13—14, and 12—13 continue to
exhibit negligible dissipation (<0.06 MV A), consistent with
expected behavior in radial tail-end feeders.
The line loss distribution in Figure 5 reveals an optimized
network profile, where high-load lines still exhibit reduced
loss gradients compared to previous models. There is also
better uniformity in loss distribution, suggesting minimized
skew and reduced vulnerability to bottlenecks.
4. Conclusion

An approach for optimization of reactive power in
power network is presented. The case study power network
is the IEEE 14-bus network and the approach used is a
combination of the Deep Reinforcement Learning (DRL)
and Non-Dominated Sorting Genetic Algorithm IT (NSGA-
II) models. The hybrid model derived from the integration
of the DRL and NSGA-II algorithm is referred to as the

DRL + NSGA-II model. In the DRL + NSGA-II hybrid
model, the NSGA-II which is a multi-objective
evolutionary  algorithm, complements the learning
dynamics of Deep Reinforcement Learning (DRL) by
guiding the model toward a Pareto-optimal frontier that
balances active and reactive power mismatch across the
grid. The results show that there is remarkably consistent
levels of power demand, with most values clustered tightly

around- 29 MW. This consistency indicates that the hybrid
optimization strategy has successfully pushed the power
system toward global load balance, with minimal deviation
among buses. Also, the results show that the DRL +
NSGA-II hybrid model provided well-balanced dispatch
strategy, devoid of congestion or over-saturation on critical
links, which indicates effective exploration of state-action
spaces by the DRL agent and optimal tuning from the
NSGA-II layer.
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